Science Page: Swine Global Surveillance Project: update and future steps

This is our Friday rubric: every week a new Science Page from the Bob Morrison’s Swine Health Monitoring Project. The previous editions of the science page are available on our website.

This week, we are sharing an update on the Swine Global Surveillance Project, lead by the Center for Animal Health and Food Safety in collaboration with the UMN Veterinary Diagnostic Laboratory, the UMN swine group and the Swine Health Information Center (SHIC).

 Key Points:

  • It is a public, private and academic partnership to implement a system for near real time global surveillance of swine diseases.
  • The output of the system is a report of hazards identified and subsequently scored that may represent a risk for the US pork industry.
  • Developing systems to provide situational awareness to stakeholders in near-real time can facilitate the coordination between government agencies and the industry with the ultimate objective of preventing or mitigating the impact of diseases epidemics.
  • The reports are available at: https://z.umn.edu/SwineDiseaseSurveillance

The system of near real time global surveillance of swine diseases is based on an online application.  Initially focused on three main potential
threats: Classical Swine Fever (CSF), African Swine Fever (ASF), and Foot and Mouth Disease (FMD), it will expand to other exotic swine diseases in the US in the near future. A report, distributed on a monthly basis by SHIC, includes a list of identified hazards that may represent a risk for the US.

Swine global surveillance process steps

Several steps are needed to build the Swine Global Surveillance report as shown in the figure above.

  1. Screening/Filtering phase: Multiple official data sources and soft data sources are systematically screened to build a raw repository. After that, an Include/exclude process is undertaken under a crowdsourcing model.
  2. Scoring phase: A multi-criteria rubric was built based on: credibility, scale and speed of the outbreak, connectedness, local capacity to respond and potential financial impact on the US market. Each event is score independently by a group of experts.
  3. Quality assurance (QA)/building: Its aim being to ensure that the design, operation, and monitoring of processes/systems will comply with the principles of data integrity including control over intentional and unintentional changes to information. The monthly report is put into a PDF document automatically from the app after the scoring process is finalized. At last, assembly of figures and proofreading is done before sending it to SHIC for monthly publication.

Next steps

  • Complete automation of event capture into the database
  • Expansion of the list of diseases in the report
  • Shrinking the gap between Search/Filter phase and Final Publication – (1 week)
  • Expanding scoring experts panel
  • Process documentation – Quality assurance compliance

Science Page: Influenza herd-level prevalence and seasonality in Midwestern sow farms

This is our Friday rubric: every week a new Science Page from the Bob Morrison’s Swine Health Monitoring Project. The previous editions of the science page are available on our website.

This week, we are sharing a report from Dr. Fabian Chamba regarding influenza herd-level prevalence and seasonality in the Midwest.

Key points:

  • Influenza is endemic and seasonal in piglets from sow farms in the Midwest with higher infections in winter and spring.
  • Influenza seasonality was partially explained by outdoor air absolute humidity and temperature trends.
  • Influenza genetic diversity was high and co-circulation of more than one genetically distinct virus was common.

To study influenza levels over time and its seasonality, monthly testing data of piglets at weaning from 34 sow farms during ~5 years were analyzed.

There were 28% of positive submissions with a median influenza herd-level prevalence of 28%. Genetic diversity was significant with 10 genetically distinct clades of contemporary US swine influenza viruses as shown below. Furthermore, 21% of farms had 3 genetically distinct viruses circulating over time; 18% had 2, 41% had 1 and 20% had no isolates available.

In summary, influenza herd-level prevalence in Midwestern sow farms had a seasonal pattern with higher levels in winter and spring. This is important to better allocate influenza control strategies such as vaccination in sow farms. Influenza seasonality was partially explained by outdoor air absolute humidity and temperature although other factors such as immunity and new introductions may play a role in the observed seasonality.

Read the full story at https://www.frontiersin.org/articles/10.3389/fvets.2017.00167/full.

Science Page: Prevalence comparison among different MSHMP cohorts

This is our Friday rubric: every week a new Science Page from the Bob Morrison’s Swine Health Monitoring Project. The previous editions of the science page are available on our website.

This week, we are sharing a report from the MSHMP team regarding the differences in PRRS prevalence among various cohorts.

Key points:

  • Prevalence among cohorts does not differ.
  • Seasonal patterns can be seen in different cohorts located in different regions.

Prevalence PRRS status cohortA comparison from a prevalence standpoint between the cohort of farms belonging to the 13 systems participating at the start of the MSHMP (CS) and the cohort of farms from systems that joined the program later (CL), was performed with the objective of assessing whether the patterns between cohorts compare.

As seen in Figure 1–CS, there was a clear shift towards more use of MLV over LVI for sow herd stability purposes. The proportion of farms using LVI in the CS versus the CL is 5% and 10%, respectively. When assessing the proportion of farms in each AASV PRRS category (Holtkamp et al., 2011) both groups are comparable (Table 1). Also the temporal pattern of infection can be seen in both cohorts as described by Tousignant et al (2014).

In summary, both cohorts of farms (CS versus CL) yield similar results which continue to highlight the robustness of the program and the representativeness of the systems contributing to this program.

Science Page: Investigating the role of the environment and the lactating sow in PRRSV infections during an outbreak (Part 2)

This is our Friday rubric: every week a new Science Page from the Bob Morrison’s Swine Health Monitoring Project. The previous editions of the science page are available on our website.

This week, we are sharing part 2 of the report on the role of the environment and the lactating sow in PRRSV outbreak. You may find part 1 of the report here.

Key Points:

  • PRRS virus can be detected in the environment of the farrowing house (surfaces and air) and on the udder skin of lactating sows. However, PRRSV detection in the environment decreases as time after an outbreak increases.
  • PRRSV was not detected in the environment after 4 months of an outbreak
  • Role of environmental PRRSV in the transmission of the disease is still unknown.

In this study, udder and surface wipes as well as particle deposition wipes were collected both at processing and at weaning, starting 2 weeks after the PRRSV outbreak.

PRRS sampling udder wipes surface wipes particle deposition

Results showed that PRRSV was detected at processing up to 14 weeks after the outbreak in surfaces and udder skin of lactating sows. At weaning, PRRSV was detected up to 17 weeks post-outbreak using udder skin wipes. The number of positive samples decreased over time and the Ct values of the positive samples increased over time indicating a decrease in infection load overtime. Detection of airborne particle deposition positive samples followed a similar pattern to those of the crate surfaces and udder wipes. Virus could be isolated and sequenced from all sample types.

Udder skin and environment may play a role in the transmission and maintenance of PRRSV in piglets in breeding herds; however further research is needed to validate this observation.

 

Science Page: Investigating the role of the environment and the lactating sow in PRRSV infections during an outbreak (Part 1)

This is our Friday rubric: every week a new Science Page from the Bob Morrison’s Swine Health Monitoring Project. The previous editions of the science page are available on our website.

This week, Dr. Carles Vilalta and Dr. Juan Sanhueza in collaboration with Dr. Montse Torremorell discuss the sensitivity and specificity of sampling the farrowing environment and lactating sows at processing to detect PRRSV in an infected farm.

Key Points:

  • Lactating sows and the farrowing environment can be sources of PRRS virus
  • Sampling the farrowing environment and the udder skin of lactating sows can be used to monitor for PRRSV although the sensitivity is lower than that of serum samples.
  • The farrowing environment and the lactating sow may serve as a source of infection for PRRSV.

Sampling started 2 weeks after a PRRSV outbreak was reported in a sow farm. Sampling was conducted from 10 litters every 3 weeks for a total of 24 weeks. Samples were collected at processing (~ 3 days of age) and included: surface wipes of farrowing crates, surface wipes of the udder skin of lactating sows, blood samples from all piglets within the selected litters.

PRRS sampling in the environment and on the sows.gif
Scatter plot of the individual RT-PCR Ct values in serum (all piglets) compared with those from surfaces (A) and udder skin (B).

PRRSV was detected in the farrowing crate environment and on the skin of the lactating sow at processing. The surface and udder skin wipes were less sensitive at detecting PRRSV than serum PCR at processing. However, in this study all pigs in the litter were bled which is not the standard practice in the field.

The results show that the environment and the lactating sow may serve as a source of
infection for PRRSV, indicating a need to further understand their roles to establish herd level stability.