Which air sampler to detect swine airborne viruses?

This is the question that Drs. Carmen Alonso, Sagar Goyal, Peter Davies, and Montse Torremorell from the College of Veterinary Medicine studied in collaboration with Drs. Bernard Olson and Peter Raynor from the College of Science and Engineering and the School of Public Health respectively,  in the following paper published in Aerosol Science and Technology this past month.

In this study, the team form the University of Minnesota compared the capacity of two different air samplers to detect PRRSv and SIV in an experimental setting. The challenge to detect viral aerosol is to find a technique capable of capturing small amount of virus in a large amount of air. This experiment found that the particle size, the media used for collection as well as the extraction technique (passive or active) all had a significant effect on the detection of the viruses.

alonso-comparison-two-air-samplers

Abstract: Detection and quantification of dilute viral aerosols, as encountered outside animal housing facilities, requires methods that are able to detect small numbers of viruses in large volumes of air. This study compared the performance of two size-differentiating cascade impactors; an Andersen 8-stage (ACI; 28.3 L/min) and a high volume Tisch (TCI; 1,133 L/min) to assess sampling efficiency for detecting porcine reproductive and respiratory syndrome virus (PRRSV) and influenza A virus (IAV). Samples of particles sorted by aerodynamic diameter were analyzed by quantitative polymerase chain reaction (qPCR) and collection efficiency was assessed by particle size. Collection media (minimum essential medium [MEM] and beef extract [BE]), elution technique (active versus passive), and sampling times (10, 20, and 30 min) were variables assessed for the TCI sampler. Extraction efficiency was 35% higher with BE as compared to that of MEM (p = 0.0007); active extraction technique was 19% more efficient than the passive technique (p = 0.03); time of sampling did not significantly affect the amount of virus recovered. The ACI sampler was more efficient in detecting both viruses from small and medium sized airborne particles (≤3 μm) as compared to the TCI sampler (p < 0.001). The latter sampler, however, was more efficient at IAV detection from large airborne particles (>3 μm) (p = 0.0025) indicating the potential of this sampler in detecting the presence of small amounts of viruses in aerosols under field conditions.

Link to the full article

Pregnancy diagnostic wet lab for veterinary students

This past week-end, a dozen of veterinary students chose to meet with Drs. Maria Pieters and Perle Boyer at the University of Minnesota Southern research and outreach center in Waseca, MN to practice their pregnancy diagnostic skills over enjoying the unusually warm weather.

For over 3 hours, the first to third-year veterinary students each got the chance to perform an ultrasound examination on sows at various stages of gestation as well as on a sow that was not pregnant to appreciate the difference. Various tools were presented to them to compare and to get familiar with.

By the end of the lab, we are glad to say that all students were able to successfully tell if a sow was pregnant or not!

This slideshow requires JavaScript.

Investigation of Senecavirus A pathogenesis in finishing pigs

Dr. Fabio Vannucci, a University of Minnesota swine pathologist and his graduate student Dr. Talita Resende collaborated with a team from South Dakota State University to study the pathogenesis of Senecavirus A in finishing pigs. The results of their experiments were published online a few weeks ago in the Journal of General Virology and the printed version should be following shortly.

The importance of Senecavirus A in swine production resides in a striking resemblance in clinical signs with Food and Mouth Disease. Indeed, Senecavirus A causes vesicular lesions around the mouth and on the feet of pigs.

The collaborative work showed that Senecavirus A viremia occurred between 3 to 10 days post-inoculation (dpi), and that the neutralizing antibody response started 5 dpi. Clinical signs first observed 4dpi, lasted up to 10 days.
This study advances our understanding of Senecavirus A pathogenesis to hopefully be able to better manage it in the future.

vannucci-senecavirusa

Abstract: Senecavirus A (SVA) is an emerging picornavirus that has been recently associated with vesicular disease and neonatal mortality in swine. Many aspects of SVA infection biology and pathogenesis, however, remain unknown. Here the pathogenesis of SVA was investigated in finishing pigs. Animals were inoculated via the oronasal route with a contemporary SVA strain SD15-26 and monitored for clinical signs and lesions associated with SVA infection. Viremia was assessed in serum and virus shedding monitored in oral and nasal secretions and feces by real-time reverse transcriptase PCR (RT-qPCR) and/or virus isolation. Additionally, viral load and tissue distribution were assessed during acute infection and following convalescence from disease. Clinical signs characterized by lethargy and lameness were first observed on day 4 pi and persisted for ~2-10 days. Vesicular lesions were observed on the snout and feet, affecting the coronary bands, dewclaws, interdigital space and heel/sole of SVA-infected animals. A short-term viremia was detected between days 3-10 post-inoculation (pi), whereas virus shedding was detected between days 1-28 pi in oral and nasal secretions and feces. Notably, RT-qPCR and in situ hybridization (ISH) performed on tissues collected on day 38 pi revealed the presence of SVA RNA in the tonsil of all SVA infected animals. Serological responses to SVA were characterized by early neutralizing antibody responses (5 days pi), which coincided with a progressive decrease in the levels of viremia, virus shedding and viral load in tissues. This study provides significant insights on the pathogenesis and infectious dynamics of SVA in swine.

Link to the full article

Thank you for a great 2016 Leman conference!

Tuesday marked the end of the 2016 Allen D. Leman conference held in St. Paul, MN. The conference gathered more than 850 professionals and veterinarians from the swine industry for 4 days of conferences and exchanges on the latest science-driven solutions.

Among the highlights from this conference, we would like to congratulate Dr. Deb Murray from New Fashion Pork for receiving the Science in Practice Award. The Pijoan lecture was given by Dr. Peter Davies from the University of Minnesota whereas Dr. Paul Ruen from Fairmont Veterinary Clinic presented the Hanson lecture. Dr. Joe Connor was recognized as the Breakfast Conversation Honoree this year. Lastly, our Distinguished Lecturer, Dr. Alison Van Eenennaam challenged the audience on Genetically Modified Organisms (GMOs).

If you attended the conference, you may have received an email with a link to a survey. Please, consider taking a few minutes to answer it as we very much value your input and feedback.

Thank you and see you next year, September 16−19, for another amazing edition of the Allen D. Leman conference!

This slideshow requires JavaScript.

Airborne transmission of highly pathogenic avian influenza during the 2015 outbreak in the Midwest

In 2015, the Midwestern part of the United States was the theater of an outbreak of a highly pathogenic strain of avian influenza. Drs. Torremorell, Alonso and Davies from the University of Minnesota were involved during the epidemic and just published in Avian Diseases and their findings concerning the airborne transmission of the virus were just published in Avian Diseases.

The study showed that the air exhausted from an infected poultry facility was a source of contamination for the environment but also a risk of transmission for Highly Pathogenic Avian Influenza (HPAI) that needs to be seriously taken into consideration. Indeed, live and infectious virus was found at a distance up to 70m (76.5 yards) from the farm facilities.

airborne-high-path-avian-flu

Abstract: We investigated the plausibility of aerosol transmission of H5N2 highly pathogenic avian influenza (HPAI) virus during the 2015 spring outbreaks that occurred in the U.S. midwest. Air samples were collected inside and outside of infected turkey and layer facilities. Samples were tested to assess HPAI virus concentration (RNA copies/m3 of air), virus viability, and virus distribution by particle size. HPAI virus RNA was detected inside and up to 1000 m from infected facilities. HPAI virus was isolated from air samples collected inside, immediately outside, up to 70 m from infected facilities, and in aerosol particles larger than 2.1 lm. Direct exposure to exhausted aerosols proved to be a significant source of environmental contamination. These findings demonstrate HPAI virus aerosolization from infected flocks, and that both the transport of infectious aerosolized particles and the deposition of particles on surfaces around infected premises represent a potential risk for the spread of HPAI.

Link to the full text