Detection of Mycoplasma hyopneumoniae in naturally infected gilts over time

A longitudinal study to assess Mycoplasma hyopneumoniae natural infection in gilts

This study was conducted by Dr. Karine Takeuti under the supervision of Dr. Maria Pieters from the University of Minnesota, College of Veterinary Medicine. The objective was to sample replacement gilts from 20 days of age until the day before weaning to detect Mycoplasma hyopneumoniae . Laryngeal swabs, tested by PCR, were taken every 30 days at a Mycoplasma positive sow farm. Therefore, the animals were naturally infected.

Gilts were found positive at 110 days, no detection in piglets

11.4% of the gilts were found positive at 110 days whereas all the previous samples came back negative. Positive results peaked at 140 days when 36.4% of the samples were positive for Mycoplasma hyopneumoniae. 27.3% of the gilts got positive results twice or more during the sampling period but 18.2% of the animals remained negative for the duration of the study.  All of the 220 piglets samples were also negative.

Takeuti longitudinal gilt mycoplasma hyopneumoniae 2017
Abstract

Mycoplasma hyopneumoniae causes a chronic respiratory infection in pigs and its transmission occurs mainly by direct contact and by vertical transmission (sow-to-piglet). The objective of this study was to assess the detection dynamics and persistence of M. hyopneumoniae natural infection in replacement gilts. Forty-four twenty-day-old gilts were selected from a M. hyopneumoniae positive farm and followed up to one day prior to their first weaning. Laryngeal swabs were collected every 30 days, starting at day 20, for M. hyopneumoniae detection by real-time PCR, resulting in 12 samplings. Piglets born to selected females were sampled via laryngeal swabs one day prior to weaning to evaluate sow-to-piglet transmission. The M. hyopneumoniae prevalence was estimated at each one of the 12 samplings in gilts and a multiple comparison test and Bonferroni correction were performed. Bacterial detection in gilts started at 110 days of age (doa) and a significant increase (p < 0.05) occurred at 140 doa. The M. hyopneumoniae prevalence remained above 20% from 140 to 230 doa, decreasing thereafter. However, it did not reach 0% at any sampling after 110 doa. In this study, M. hyopneumoniae was not detected in piglets sampled prior to weaning. The M. hyopneumoniae detection pattern showed that in natural infections, gilts were positive for M. hyopneumoniae for one to three months, but occasionally long-term detection may occur. Moreover, the lack of M. hyopneumoniae detection throughout the study in 18.2% of gilts indicated the existence of negative subpopulations in positive herds.

Link to the entire article

Science page: M. hyopneumoniae outbreaks: what you need to know to aid in your investigation

This is our Friday rubric: every week a new Science Page from the Swine Health Monitoring Project. The previous editions of the science page are available on our website.

Key points from this week edition:

Molecular characterization tools such as p146 sequencing for Mycoplasma hyopneumoniae (M. hyopneumoniae) can provide insight towards investigating elimination failures or new introductions within swine herds.

Sample and diagnostic types for early detection of Mycoplasma hyopneumoniae

Summary:

Mycoplasma hyopneumoniae is the causative agent enzootic pneumonia, an economically significant disease in pigs. In this study published by Drs. Pieters and Rovira from the University of Minnesota, pigs experimentally inoculated with M.hyopneumoniae were sampled 0, 2, 5, 9, 14, 21, and 28 post-inoculation.

Different sample types were compared:

  • Nasal swabs
  • Laryngeal swabs
  • Tracheobronchal lavages
  • Oral fluids
  • Serum samples

Using different diagnostic tests:

  • PCR
  • ELISA IgG anti M.hyopneumoniae
  • ELISA Ig M anti M.hyopneumoniae
  • ELISA C-reactive protein

Laryngeal swab samples tested by PCR were highly sensitive for detection of Mycoplasma hyopneumoniae in live pigs.
Various commercial ELISA kits for detection of Mycoplasma hyopneumoniae antibodies showed similar sensitivity.
Oral fluids showed a low sensitivity for detection of Mycoplasma hyopneumoniae in experimentally infected pigs.

Pieters Mhyopneumoniae early detection test sample 2017

Abstract

Detection of Mycoplasma hyopneumoniae in live pigs during the early stages of infection is critical for timely implementation of control measures, but is technically challenging. This study compared the sensitivity of various sample types and diagnostic methods for detection of M. hyopneumoniae during the first 28 days after experimental exposure. Twenty-one 8-week old pigs were intra-tracheally inoculated on day 0 with M. hyopneumoniae strain 232. Two age matched pigs were mock inoculated and maintained as negative controls. On post-inoculation days 0, 2, 5, 9, 14, 21 and 28, nasal swabs, laryngeal swabs, tracheobronchial lavage fluid, and blood samples were obtained from each pig and oral fluid samples were obtained from each room in which pigs were housed. Serum samples were assayed by ELISA for IgM and IgG M. hyopneumoniae antibodies and C-reactive protein. All other samples were tested for M. hyopneumoniae DNA by species-specific real-time PCR. Serum antibodies (IgG) to M. hyopneumoniae were detected in challenge-inoculated pigs on days 21 and 28. M. hyopneumoniae DNA was detected in samples from experimentally inoculated pigs beginning at 5 days post-inoculation. Laryngeal swabs at all samplings beginning on day 5 showed the highest sensitivity for M. hyopneumoniae DNA Detection, while oral fluids showed the lowest sensitivity. Although laryngeal swabs are not considered the typical M. hyopneumoniae diagnostic sample, under the conditions of this study laryngeal swabs tested by PCR proved to be a practical and reliable diagnostic sample for M. hyopneumoniae detection in vivo during early-stage infection.

Link to the full-article

Advances in Mycoplasma hyopneumoniae elimination: a podcast series

This past month, the Morrison group invited Dr. Paul Yeske, swine practitioner at the Swine Vet Center (St. Peter, MN), Dr. Amanda Sponheim, PhD candidate at the University of Minnesota and Support Veterinarian at Boerhinger Ingelheim, and Dr. Maria Pieters from the University of Minnesota to discuss the latest progress made in successfully eliminating Mycoplasma hyopeumoniae from swine herds. Dr. Pieters is the head of the MycoLab at the College of Veterinary Medicine and focuses on diagnostics and epidemiology of swine mycoplasms to help veterinarians control associated diseases.

  1. History of Mycoplasma hyopneumoniae herd elimination and practices: podcast
  2. Sampling techniques and protocols to use during the process of elimination: podcast
  3. Starting the elimination: when is day zero? podcast

The podcasts in the press