Swine Disease Global Surveillance Report: bi-monthly update

The new swine disease global surveillance report was released earlier this week. Coordinated by the University of Minnesota in collaboration with the Swine Health Information Center, the aim of these reports is to have a structure for near real-time identification of hazards. In this report, updates are focusing on African Swine Fever in China and Belgium, Classical Swine Fever in Brazil and Japan, Foot and Mouth Disease in Colombia.

African Swine Fever

CHINA

Since last August, 30 outbreaks of ASF have been reported in China spreading through nine provinces. So far in October, seven outbreaks occurred, five of them in the province of Liaoning in the northeast of the country where the first case was reported two months ago. This peak in the number of outbreaks suggests the situation still remains far from
under control.

BELGIUM

Belgium keeps investigating the presence of the disease in the wild boar population. Fences and gates were built aiming to isolate an area, but so far 84 animals were detected positive since the first detection of the disease in the country, on September 13. There are several theories regarding introduction of the virus in this region in Europe and the role people play in carrying swine by-products or even hunting materials into this region is being discussed and investigated.

Classical Swine Fever

BRAZIL

On October 8, Brazilian Ministry of Agriculture (MAPA) reported an outbreak of CSF in a backyard free-range farm located in the state of Ceará (Forquilha-CE). The outbreak was reported to the veterinary service, where high mortality rates and clinical signs (anorexia, fever, incoordination) were observed in sows and younger pigs. The fatality rate was 97 percent and the remaining animals were euthanized. The farm was then isolated followed by the euthanasia for the animals, sanitary destruction of carcasses, disinfection, a restriction of movements in the region, and an initiation of an investigation in surrounding farms.

JAPAN

One month after the identification of the outbreak of CSF in Japan, investigations were implemented in the region of Gifu Prefecture, along with 25 other Prefectures. Overall, 19 wild boars were found positive (15 percent) for CSF in Gifu, and no positive animals were identified elsewhere. Investigations are ongoing.

Foot and Mouth Disease

Currently, the following countries have reported the presence of FMD in swine: China, Colombia, South Korea, North Korea, and Russia.

COLOMBIA

On October 10, the Colombian Agricultural Institute (ICA, by its Spanish acronym) reported an outbreak of FMD in a swine farm, located in the Departamento de Cesar, north of the country and very close to the Venezuelan border. Ten days prior, another outbreak was identified in cattle, in a city located approximately 500 miles (800km) away, in Departamento de Boyaca. Both regions have vaccination coverage and were recognized as “free with vaccination” on December 2017.

The full report with maps and location of the various outbreaks is available to read here.

 

Porcine Circovirus 3: a new episode from At the meeting with… podcast

microphone-2618102_1920Podcasts are a perfect way to get caught up with new swine information! We are presenting you the latest episode from “At The Meeting… Honoring Dr. Bob Morrison” in collaboration with SwineCast.

In this episode of At the Meeting honoring Dr. Bob Morrison, we share a conversation on porcine circovirus 3, or PCV3.

Dr. Montse Torremorell joins Dr. Tom Wetzel and Dr. Gordon Spronk with special guest Dr. Darin Madson, Iowa State University, to talk about porcine circovirus 3 and how it is both similar to, and different from PCV2.

Dr. Madson and the show’s cohosts discuss clinical signs associated with PCV3, including myocarditis, respiratory issues, and reproductive problems, as well as how current research is focused on better understanding the virus, its history, and whether any current PCV vaccines could offer some form of cross-protection.

Listen to the entire episode (17 minutes)

Science Page: Remembering Professor Mike Murtaugh

This is our Friday rubric: every week a new Science Page from the Bob Morrison’s Swine Health Monitoring Project. The previous editions of the science page are available on our website.

This week, we are remembering Professor Mike Murtaugh with Cheryl Dvorak.

Michael MurtaughProfessor Michael Murtaugh, PhD, passed away Tuesday September 18 from complications of pancreatic cancer. He was 67.

Mike joined the college in 1985 and spent the entirety of his University of Minnesota career in the Department of Veterinary and Biomedical Sciences. He was a consummate faculty member, excelling in teaching graduate courses and conducting research and
outreach. Mike authored more than 225 peer-reviewed journal articles, was the primary advisor for 30 Master’s and PhD students, and held three U.S. patents. His influence extended throughout the Academic Health Center at the University and throughout the world. At the time of his death, Mike was serving on the editorial boards of more than a dozen academic journals, and had successfully completed nearly 160 sponsored projects as Principal Investigator or Co-Investigator.

Mike was a respected and highly sought after mentor. He always had people coming and going from his office asking for scientific, career, and personal advice. His door was always open and he always stopped what he was doing to help others. He touched many
lives during his career. Besides his numerous graduate student advisees, he also mentored over fifteen veterinary students, thirty-six undergraduate and high school students, twelve post-doctoral researchers, twenty visiting scientists, and numerous others who came to him for advice and support. He cared about everyone not only scientifically, but also personally. He always wanted to do what was in a student’s best interests, even though it may not have been what was in his best interest. His lasting legacy is in the scientific training and education of a generation of swine health specialists and researchers.

Prof. Murtaugh was an international leader in swine immunology, and devoted considerable effort over the past 25 years in battling the Porcine
Reproductive and Respiratory Syndrome virus (PRRSv), a disease that
costs U.S. swine producers alone some $500 million annually. Mike used
molecular biological approaches to first understand the nature of PRRSv
and investigated in detail the immunological response of pigs to this pathogen.

Mike earned the B.S. degree in biology at the University of Notre Dame and
then served as a Peace Corps volunteer in Venezuela. He earned a Ph.D. in entomology at the Ohio State University. The University of Texas Medical School in Houston was his next stop— he spent four years in a post-doctoral position in the Departments of Internal Medicine and Pharmacology— before assuming a faculty position in St. Paul.

He will be remembered for his dry sense of humor and positive outlook on life, character traits that he maintained even as his battle with cancer raged. Mike cared passionately about science and derived some of his greatest personal satisfaction working on the college’s Strategic Plan and the International Conference on One Medicine and One Science (iCOMOS). Mike cared deeply about science informing policy and saw the need for scientists to be more actively involved in communicating about their research.

I am grateful to have known him, and stand in awe of the many contributions he made to our college.

Recordings from the ASF session at the 2018 Leman conference are available

African Swine Fever is a topic of concern for the industry. The organizing committee of the 2018 Allen D. Leman Swine conference recognized that and responded by dedicating an entire session of the conference on this topic. Below are the recordings from that session.

Dr. Chris Oura: African Swine Fever – a real and present global threat

Dr. Gustavo Lopez: ASF experience in a large commercial system

Dr. Patrick Webb – ASF awareness, prevention & response efforts at the national level

Dr. Scott Dee – Risk of African Swine Fever (ASF) virus in feed and mitigation strategies

 

Science Page: Basic Steps for Foreign Animal Disease Preparedness

This is our Friday rubric: every week a new Science Page from the Bob Morrison’s Swine Health Monitoring Project. The previous editions of the science page are available on our website.

This week, we are sharing a one-page step-by-step reference document for foreign animal disease preparedness, created by the MSHMP team.

Key Points

  • The current African Swine Fever situation in China and Europe makes Foreign Animal Disease preparedness even more crucial.
  • There are steps that can be taken to prepare a site for a Foreign Animal Disease and to improve the probability of continued animal movement.
  • Many producers are already doing these steps in some form and taking the practices to the level of documentation can add benefits when dealing with other diseases such as PRRS and PED.

As African Swine Fever (ASF) has been moving rapidly through China and Europe, the possibility of a Foreign Animal Disease (FAD) event in the United States becomes more of a possibility. In the event of an FAD, state and federal animal health officials will limit movement of animals and animal products to limit disease spread.

Movement permit requirements are decided by regulatory officials from each state’s animal health department, but there are steps producers can take to help them mitigate chances of infection and to increase their likelihood of receiving a movement permit during an FAD. These steps are also outlined on the Secure Pork Supply (SPS) plan website. SPS is a collaboration between USDA APHIS, Pork Checkoff, Iowa State University, and the University of Minnesota.

Basic Steps:

Establishing location and site information:

A site must have a Premises ID Number (PIN) in order to move pigs or pig products. A PIN includes the 911 address and latitude and longitude coordinates of the actual location of the pigs. Having this information allows state and federal animal health officials to determine if a site is within control or quarantine zones based on its location to infected sites. The PIN is also imperative for allowing accurate tracking of pig and supply movement into the farm and identifying any connection to infected sites. It is important to validate that the location information points to the swine location and not an alternative house or building. Additionally, it is good to have information on farm contact such as manager and owner phone numbers and emails, number of animals, and if any other species are present on site.

Proof of biosecurity measures:

secure pork supplyBeing able to demonstrate the biosecurity measures of a production site will greatly improve permitting chances because good biosecurity helps ensure lower infection risk. The SPS supplies a biosecurity self-assessment checklist (http://www.securepork.org/Resources/SPS_Biosecurity_Self-Assessment_Checklist-_-IndoorProduction.pdf) covering the areas that should be included in a biosecurity plan. These areas are staff training, vehicles and equipment, personnel, wildlife and insects, manure management, carcass disposal, animal and semen movement, feed, and establishing protection of the pig herd such as a line of separation, perimeter buffer, disinfection station, and access points, including a map of the site. Being able to track movements in and out of the farm as well as between production sites is highly beneficial. A biosecurity manager should be appointed to write and manage the biosecurity plan.

Disease Monitoring and Epidemiological Information

In the event of an FAD, producers will be asked to provide epidemiological information and confirmation based on monitoring that there is no evidence of infection. Much of the epidemiological information that may be requested overlaps with the SPS biosecurity plan outline, such as knowing movement of equipment, incoming animals, products, and feed, and inter-site movement of personnel. Regular recorded monitoring of the animals allows a producer to provide confirmation that no clinical signs of an FAD have been observed. To make this effective, staff performing the monitoring must know how to identify the diseases and records must be consistent. Additionally, samplescan be stored and used to prove that the herd has been and remains negative. The SPS provides resources in both Spanish and English detailing disease identification for FAD’s, an example questionnaire of epidemiological information that may be requested, and resources for disease monitoring and emergency response.These resources can be found at http://www.securepork.org/pork-producers/disease-monitoring/ and http://www.securepork.org/Resources/SecurePorkSupply-Questionnaire.pdf .

These steps can be labor intensive with no clear immediate return, particularly the development of a biosecurity plan and regular monitoring records. This understandably can make them a low priority as producers deal with many resource decisions and demands on a daily basis.In light of this, it is important to remember that having these steps prepared will be invaluable for maintaining animal movement and continuity of business in the case of an FAD. Many of the steps or questions being used in these tools, like awareness of movement into and out of the farm, regular monitoring for clinical signs, and good biosecurity measures are things producers often do already. These steps simply put them into finalized and recordable forms. The process can also benefit the farm by showing biosecurity gaps and improving monitoring practices and records that are relevant to diseases such as PRRS, PED, and influenza.

Find more info about SPS at: http://www.securepork.org/

The 2018 Allen D. Leman Swine Conference successfully continued its tradition of high-quality content while innovating

The 2018 edition of the Allen D. Leman swine conference held in St. Paul, MN continued to offer a wide range of high-quality, science-driven presentations while innovating on several aspects of its program.

JSP-7273
Megan Bloemer (right) receives the Morrison Swine Innovator Prize from Dr. Perle Boyer (left)

This year marked the second year of the DVM student session at the Leman conference but the first time that a student received the Morrison Swine Innovator Prize. Megan Bloemer, a student from the University of Illinois was truly honored to be the first recipient of this prestigious recognition. Megan received a $7,500 scholarship in addition to participating in an exclusive workshop with the other DVM students-presenters. The quality of the students’ presentations was excellent but the practicality and the innovation with which Megan treated the issue of truck wash biosecurity put her at the top.

Sunday afternoon, the new Beer and Bacon conversation series was launched. The session, during which Dr. Matthew Turner was interviewed by Dr. Marie Culhane, was extremely popular. Seating was limited so do not forget to register early if you would like to attend next year!

JSP-7274
Dr Rebecca Robbins (left), Science in Practice awardee and Dr. Montse Torremorell (right)

We celebrated Dr. Rebecca Robbins for her well-deserved recognition as the Science  in Practice awardee of the year. The reception held in the Science museum in St Paul was sponsored by Boehringer Ingelheim.

 

The spread of African Swine Fever in China and Western Europe prompted us to dedicate two very well-attended sessions on this topic. The first session on Monday afternoon coordinated by Dr. John Deen included a summary of what is known about the disease by Dr. Chris Oura, then a clinical case experienced in Russia by Dr. Gustavo Lopez and a presentation by Patrick Webb on ASF awareness in the industry and beyond. On Tuesday, Dr. Scott Dee presented his latest research on the risk from feed ingredients for the transmission of ASF.

For more information, the University of Minnesota launched two webpages:

The 2018 Allen D. Leman conference continued to propose high quality keynote speakers.
Dr. Brad Freking and Dr. Deb Murray from New Fashion Pork gave the first Morrison lecture and presented their vision of pig farming. They explained how they chose to decrease their antimicrobial usage while reserving the right to treat pigs when needed and why they launched Old Fashion Pork.

JSP-7211
Dr. Maria Pieters presenting

Dr. Maria Pieters reminded us of the issues associated with having a Mycoplasma hyopneumoniae  positive herd and challenged the swine industry to eradicate the diseases that can be eradicated so that we can focus on diseases that are harder to control.

Becca Martin and Randy Spronk gave an update on trade in pigs and the current challenges that we are facing as an exporting nation. Free trade seems to be the best option for our producers in order to maintain the market.

Dr. Michael Rahe presented the Pijoan lecture on behalf of Dr. Michael Murtaugh giving us a overview of the past 30 years dealing with PRRS. Sadly, Dr. Murtaugh passed away that very same day, from his battle with cancer.

As always, we would like to thank all of you for your continuing support. The Allen D. Leman swine conference would not exist without you and we hope to see you next year: September 14-17, 2019.

This slideshow requires JavaScript.

 

Science Page: African swine fever experience in a large commercial system in the Russian Federation

This is our Friday rubric: every week a new Science Page from the Bob Morrison’s Swine Health Monitoring Project. The previous editions of the science page are available on our website.

This week, we are sharing the experience Dr. Gustavo Lopez, a PhD candidate at the University of Minnesota, had dealing with African Swine Fever in Russia.

Key points:

  • Infected pigs can be asymptomatic carriers of African swine fever virus (ASFv)
  • Timely detection with diagnostic testing, strict biosecurity measures and rapid removal of the source of infection are key to limit the transmission of the virus within and between sites.

In December 2014, ASFv was detected in a finishing site of a multiplier herd from a large commercial pig company located in the Russian Federation. The region had multiple reports of ASFv in backyard pigs before the outbreak. The affected company consisted of 80,000 sows in 15 farms organized as a three-site production system with each sow farm having a dedicated nursery and two finishers. The multiplier herd supplied gilts from the finisher to the gilt development unit (GDUs) for each farm. Each sow farm had a quarantine within the farm to receive the gilts from the GDU .

A 3% mortality increase was reported in one room of the finishing site. A few pens in one of the rooms had pigs affected with fever, purple ear and mild scouring. The site was being monitored for ASFv on a weekly basis before gilt shipment, following local regulations and results always came back negative.

Samples collected from the affected pigs were negative for ASFv, Classical Swine Fever, PRRSv, and Salmonella so the decision was made to resume shipment of gilts from a room with no clinical signs to the GDU.

As the days progressed, the clinical signs in the affected room worsened and affected more pens. The GDU that had just received gilts reported similar clinical signs and diagnostics on samples collected then from the multiplier finisher and the GDU confirmed the presence of ASFv at both sites.

At that time, all pig movements were stopped and a 5km quarantine area was imposed around the two affected sites. Gilts that had been sent from the GDU to five commercial sow farms, and were in quarantine tested negative to ASFv. Nevertheless as a precaution, the decision was taken to sacrifice all the gilts in the quarantines.

Protocols mandated by the government were implemented in the ASFv positive multiplier finisher and GDU which consisted of euthanasia of all pigs within a 5km radius, destruction with burial and burning of all carcasses, strict movement restrictions for vehicles and people and exhaustive disinfection protocols inside the farm and its territory.

Transportation of infected non-symptomatic animals from the multiplier finisher was the most likely route of infection to the GDU. The source of infection to the multiplier finisher is unknown, although people are thought to have played a role given the presence of ASFv in backyard farms in the area. Events such as introduction of infected pork meat, lack of proper disinfection of 3rd party trucks or non-compliance with the shower-in policy of the farm could not be ruled out. The outbreak occurred in December when temperatures were below zero Celsius and wild pig-tick-domestic pig interaction was unlikely.

It is important to point out that 12 of the 16 rooms in the multiplier finisher remained negative to ASFv until the moment of euthanasia. The sow farm and nursery multiplier were monitored for ASFv during the quarantine period and until the moment of euthanasia 6 months later. During this time, they remained negative to ASFv, even though they were within close proximity to the affected farm. Our experience indicates that a timely detection of ASFv with testing, strict biosecurity measures and removal of the source of infection as soon as possible can limit the transmission of the virus between sites.