Global trends in infectious diseases of swine

Dr. Kim VanderWaal and Dr. John Deen from the University of Minnesota co-authored a new publication available now in the Proceedings of the National Academy of Sciences of the United States of America.

The objectives of this study were to identify priority swine pathogens, characterize temporal and geographic trends in research priorities.

57,471 publications covering 40 swine pathogens, compiled from 3 major database searches and dating from 1966 to 2016 were included in this analysis.

The top 10 pathogens published on were:

  • Salmonella spp.
  • Escherichia coli
  • Influenza
  • Pseudorabies
  • Foot and Mouth Disease
  • Porcine Reproductive and Respiratory Syndrome
  • Classical Swine Fever
  • Actinobacillus pleuropneumoniae
  • Trichinella spp.
  • African Swine Fever

The number of publications on swine infectious diseases increased over time as the hog production intensified. However, 8 pathogens increased faster than expected, particularly in the past 15 years: hepatitis E virus, Nipah virus, influenza, Streptococcus suisLawsonia intracellularis, porcine circovirus 2, PRRS, and PED.

On the contrary, some diseases had a slower growth in number of publications than expected. These included pseudorabies, Pasteurella multocida, Actinobacillus pleuropneumoniae, Brachyspira hyodysenteriae, and transmissible gastroenteritis virus. All of these pathogens were production diseases whose importance to the industry had declined in recent decades due to better control or even regional eradication.

Differences among world regions were identified except for influenza virus which appeared in the top 5 in most regions of the world. Southern regions where extensive hog production may still be the norm, tended to focus more on parasitic infections compared to Northern areas. Western Europe centered more on pathogens related to zoonotic and foodborne concerns compared to Northern America.

Read more about the evolution of publications on swine infectious diseases around the world.

Abstract

Pork accounts for more than one-third of meat produced worldwide and is an important component of global food security, agricultural economies, and trade. Infectious diseases are among the primary constraints to swine production, and the globalization of the swine industry has contributed to the emergence and spread of pathogens. Despite the importance of infectious diseases to animal health and the stability and productivity of the global swine industry, pathogens of swine have never been reviewed at a global scale. Here, we build a holistic global picture of research on swine pathogens to enhance preparedness and understand patterns of emergence and spread. By conducting a scoping review of more than 57,000 publications across 50 years, we identify priority pathogens globally and regionally, and characterize geographic and temporal trends in research priorities. Of the 40 identified pathogens, publication rates for eight pathogens increased faster than overall trends, suggesting that these pathogens may be emerging or constitute an increasing threat. We also compared regional patterns of pathogen prioritization in the context of policy differences, history of outbreaks, and differing swine health challenges faced in regions where swine production has become more industrialized. We documented a general increasing trend in importance of zoonotic pathogens and show that structural changes in the industry related to intensive swine production shift pathogen prioritization. Multinational collaboration networks were strongly shaped by region, colonial ties, and pig trade networks. This review represents the most comprehensive overview of research on swine infectious diseases to date.

Breed-to-wean farm factors associated with influenza A virus infection in piglets at weaning

A scientific article written by Dr. Fabian Chamba Pardo when he was doing his PhD in the Torremorell lab was recently published on the journal of Preventive Veterinary Medicine. The study presented aimed to look at the various factors influencing the influenza infection status of piglets at weaning.

Highlights

  • Sow vaccination decreased influenza infections in piglets at weaning.
  • Influenza positive gilts at entry were associated with positive piglets at weaning.
  • More work is needed to assess herd closure, gilt isolation and gilt vaccination.

83 farms from 2 different pig production companies and located in Iowa, Minnesota and South Dakota were enrolled in this study. Samples were collected at weaning on a monthly basic for a little less than 6 years as part of routine surveillance programs. The majority of farms submitted 4 oral fluid samples per month but some collected nasal swabs or oro-pharyngeal swabs.

23% of the samples tested positive for influenza allowing the collection of 173 hemagglutinin sequences. In the H1 hemagglutinin subtype, isolates were 93.8% to 99% similar between each other and 94.3% to 97.4% similar to the vaccine strains. The largest discrepancy was found in the delta 1 clade. In the H3 hemagglutinin subtype, isolates were 95.9 to 99.7% similar among each other and 997.3% to 97.5% similar to the vaccine strains.

influenza factors for piglet positive at weaning

The influenza status of the piglets at weaning was influenced by several factors.

Seasons and vaccination status of the sows against influenza influenced piglet infection status at weaning. Indeed, sow influenza vaccination was significantly associated  with a decreased probability of piglets testing influenza positive at weaning. Both whole-herd and pre-farrow vaccination protocols were better compared to no vaccination and there were no differences between both protocols. Additionally, having influenza positive gilts at entry increased the probability of detecting positive piglets at weaning.

Among all the factors evaluated, sow influenza vaccination and gilt influenza status at entry were the only factors associated with influenza in piglets at weaning in Midwestern breed-to-wean farms.

Abstract

Breed-to-wean pig farms play an important role in spreading influenza A virus (IAV) because suckling piglets maintain, diversify and transmit IAV at weaning to other farms. Understanding the nature and extent of which farm factors drive IAV infection in piglets is a prerequisite to reduce the burden of influenza in swine. We evaluated the association between IAV infection in piglets at weaning and farm factors including farm features, herd management practices and gilt- and piglet-specific management procedures performed at the farm. Voluntarily enrolled breed-to-wean farms (n = 83) agreed to share IAV diagnostic testing and farm data from July 2011 through March 2017 including data obtained via the administration of a survey. There were 23% IAV RT-PCR positive samples of the 12,814 samples submitted for IAV testing within 2989 diagnostic submissions with 30% positive submissions. Among all the factors evaluated (n = 24), and considering the season-adjusted multivariable analysis, only sow IAV vaccination and gilt IAV status at entry significantly reduced (p-value<0.05) IAV infections in piglets at weaning. Results from this study indicate that veterinarians and producers could manage these identified factors to reduce the burden of influenza in piglets prior to wean and perhaps, reduce the spread of IAV to other farms and people.

Read the entire publication on the journal website.

 

Use of processing fluids and serum samples to characterize PRRSv dynamics in 3 day-old pigs

This new publication in Veterinary Microbiology describes the best methodology to monitor 3-day-old piglets for PRRS, using both serum and processing fluid samples. The first author of the publication is Dr. Carles Vilalta, member of the Morrison Swine Health Monitoring Program (MSHMP) team.

Key points

  • Processing fluids (PF) constitute a useful sample to detect PRRSV infections at processing.
  • PRRSV can circulate in the farm at a low prevalence, increasing the chances of a re-break.
  • Young parity female litters should be targeted for PRRSV detection.
  • Current practice to bleed 30 pigs could be underestimating PRRSV prevalence in the herd.
  • The decrease in sensitivity at the litter level can be compensated by sampling more litters to detect PRRSV at the herd level.

Methods

The study was conducted in a 6,000 sow farm with a PRRS stable status. Every 3 weeks, serum samples and processing fluids were collected from all piglets in 10 randomly chosen litters. This process was then repeated 8 times, meaning that the farm was monitored for a total of 24 weeks. All samples were tested via PCR. 3 samples with the lowest Ct value were tested by virus isolation and sequencing of the ORF5 gene was performed.

Results

10.6% of the piglets tested positive for PRRSv via serum PCR, representing 29.8% of the litters. The same number of litters tested positive via processing fluid PCR testing.

The percentage of processing fluid positive samples was significantly higher is parity 1 and 2 sows compared to parity 3 and older sows. Additionally, a significant association between parity and probability of detecting a positive pig was observed.

A significant higher proportion of positive serum samples was observed in males compared to females. A similar trend was obtained when comparing positive Ct values by gender with values from males being lower (i.e., higher viral load) than those from females.

ct value processing fluids versus serum samples PRRS
Cycle threshold (Ct) positive (≤35) and suspect (between >35 and 40) value distribution for serum (S, triangle) and processing fluid (P, circle) samples overtime (2, 5, 8, 11, 14, 17, 20 and 23 weeks post outbreak). Horizontal black lines indicate the mean Ct values for each week and sample type

Using a Ct value of 37, processing fluid samples had a Se and Sp of 87% (95% CI: 66%–97%) and 94% (95% CI: 85%–99%), respectively when compared with litter RT-PCR results obtained from individual serum samples. The total agreement between both tests was 92.2% and the positive and negative predictive values were 87% (95% CI: 66%–97%) and 94% (95% CI: 85%–99%), respectively. False negative processing fluids were identified in litters having 2 or less PRRSV positive piglets

The agreement between the PF and serum results was kappa = 0.81 (95% CI: 0.59–1.00). The difference in the proportion of positive samples between both types of sample was not statistically significant (McNemar test, p = 1).

Abstract:

Collection of serum samples of pigs at weaning to monitor for porcine reproductive and respiratory syndrome virus (PRRSV) has become a common practice to determine PRRSV herd infection status. Diagnostic sensitivity of this practice is low in herds undergoing PRRSV elimination once prevalence of infection is near zero. Thus, the goal of this study was to characterize the dynamics of PRRSV infection in 3 day-old pigs overtime using serum and serosanguineous fluids obtained as part of castration and tail docking practices (processing fluids (PF)). Secondary goal was to estimate sensitivity and specificity of PF in the 3 day old population. A 6000 breed-to-wean sow herd was monitored every three weeks for 23 weeks after a PRRSV outbreak by collecting both PF and individual serum samples from all pigs in the selected litters. Out of the 77 litters tested, 23 (29.8%) were identified as positive using the PF and the serum samples, with a Cohen’s kappa statistic of 0.81 (95% CI: 0.59–1) between the results obtained in each sample type. The sensitivity and specificity of the PF relative to the results in serum was 87% (95% CI: 66%–97%) and 94% (95% CI: 85%–99%) respectively. The percentage of PRRSV positive litters decreased over time and litters from gilts were more likely to test positive than those from older sows. Overall, the study demonstrates that PF can be a convenient and reliable specimen to monitor PRRSV infection in breeding herds.

Follow the link to read the entire article.

Pioneering Structural Study of Porcine Coronavirus

Today, we are highlighting the research of a completely different team at the University of Minnesota. The Minnesota Supercomputing Institute provides advanced research computing infrastructure and expertise to advance and accelerate research and foster innovation and discoveries.

MSI PIs Wei Zhang (research associate professor, Diagnostic and Biological Sciences) and Fang Li (associate professor, Veterinary and Biomedical Sciences) have published a new paper that describes some of their continuing research into the structure of coronaviruses. These are a large group of viruses that includes such deadly diseases as SARS and MERS. Coronaviruses have four forms, known as α-, β-, γ-, and δ-coronavirus, which affect different hosts. For example, β-coronaviruses affect only mammals, while the δ form affects both birds and mammals.

The coronavirus structure includes a feature called a “spike protein,” which allows the virus to attach to the host’s cells. The spike proteins of α- and β-coronavirus have been well studied. The spike protein of the δ-coronavirus, however, is described for the first time in this paper. The researchers used cryo-electron microscopy, a fast-developing technology in which protein molecules are studied under ultra-cold temperatures with an electron microscope. This technology was used to determine the structure of the spike protein of porcine δ-coronavirus (PdCoV), a lethal virus infecting pigs, elucidating how PdCoV infects pigs cells and evades the host immune system. This is the first atomic-resolution cryo-electron microscopic study from the state of Minnesota, and is a milestone in the structural biology field at the University of Minnesota.

Zhang Li spike protein porcine deltacoronavirus

Image Description: Overall structure of PdCoV S-e in the prefusion conformation. (A) Schematic drawing of PdCoV S-e (spike ectodomain). S1, receptor-binding subunit. S2, membrane fusion subunit. GCN4-His6, GCN4 trimerization tag followed by His6 tag. S1-NTD, N-terminal domain of S1. S1-CTD, C-terminal domain of S1. CH-N and CH-C, central helices N and C. FP, fusion peptide. HR-N and HR-C, heptad repeats N and C. Residues in shaded regions (N terminus, GCN4 tag, and His6 tag) were not traced in the structure. (B) Cryo-EM maps of PdCoV S-e with atomic model fitted in. The maps have a contour of 6.6 σ. (C) Cryo-EM structure of prefusion PdCoV S-e. Each of the monomeric subunits is colored differently. (D) Structure of a monomeric subunit in the prefusion conformation. The structural elements are colored in the same way as those in panel A. Image and description, J Shang et al., J Virol. 92:e01556-17 (2018). © American Society for Microbiology.

The paper was published in late 2017 on the website of the Journal of Virology: J Shang, Y Zhang, Y Yang, Q Geng,W Tai, L Du, Y Zhou, W ZhangF Li. 2018. Cryo-Electronic Microscopy Structure of Porcine Deltacoronavirus Spike Protein in the Prefusion StateJournal of Virology 92 (4): e01556-17. doi: 10.1128/JVI.01556-17.

This report comes from the MSI research highlights.

 

Time-series analysis for porcine reproductive and respiratory syndrome in the United States

Today, we are sharing an open-access publication from Dr. Andreia Arruda, Dr. Ana Alba and members of the MSHMP team in the journal PlosOne.

This study was conducted using data collected from the Morrison Swine Health Monitoring Project. The main objective of this study was to use time-series analysis to investigate whether yearly patterns commonly described for PRRS were in fact conserved across different U.S. states.

Methods

The 268 breeding herds enrolled in this project were the ones that participated in the MSHMP from July 2009 to October 2016. PPRS status of each farm was reported weekly following the AASV guidelines. The five states examined included Minnesota (MN), Iowa (IA), North Carolina (NC), Nebraska (NE), and Illinois (IL).

Results

81 MN farms, 72 IA, 45 NC, 30 NE, 40 from IL, were enrolled in the study with a mean number of animals per site of 2,666; 3,543; 2,342; 4,041; and 4,018 respectively.

journal.pone.0195282.g002
Graphs showing the prevalence (black line) and upper and lower 95% confidence intervals (grey dotted lines) of PRRS virus positive farms for the five different U.S. states participating in this study: A: Minnesota; B: Iowa; C: Nebraska, D: North Carolina and E: Illinois

The main finding of this study was that PRRS seasonality varies according to geographical region, and the commonly referred “PRRS season” is not necessarily the only time of increase in disease incidence.

Another interesting finding from this study was the presence of an alternating trend for all examined states within of the U.S., except for the state of Iowa, the largest pork producing states in the country (approximately 31.4% of the total US hog and pig inventory), which had an increasing linear trend over the examined years.

In conclusion, PRRS seasonal patterns are not homogeneous across the U.S., with some important pork producing states having biannual PRRS peaks instead of the previously reported winter peak. Findings from this study highlight the importance of coordinating alternative control strategies in different regions considering the prevailing epidemiological patterns, and the need to reinforce strict biosecurity practices beyond the typically described “PRRS season”.

You can also listen to Dr. Arruda present some of these research findings at the 2017 Leman conference.

Abstract

Industry-driven voluntary disease control programs for swine diseases emerged in North America in the early 2000’s, and, since then, those programs have been used for monitoring diseases of economic importance to swine producers. One example of such initiatives is Dr. Morrison’s Swine Health Monitoring Project, a nation-wide monitoring program for swine diseases including the porcine reproductive and respiratory syndrome (PRRS). PRRS has been extensively reported as a seasonal disease in the U.S., with predictable peaks that start in fall and are extended through the winter season. However, formal time series analysis stratified by geographic region has never been conducted for this important disease across the U.S. The main objective of this study was to use approximately seven years of PRRS incidence data in breeding swine herds to conduct time-series analysis in order to describe the temporal patterns of PRRS outbreaks at the farm level for five major swine-producing states across the U.S. including the states of Minnesota, Iowa, North Carolina, Nebraska and Illinois. Data was aggregated retrospectively at the week level for the number of herds containing animals actively shedding PRRS virus. Basic descriptive statistics were conducted followed by autoregressive integrated moving average (ARIMA) modelling, conducted separately for each of the above-mentioned states. Results showed that there was a difference in the nature of PRRS seasonality among states. Of note, when comparing states, the typical seasonal pattern previously described for PRRS could only be detected for farms located in the states of Minnesota, North Carolina and Nebraska. For the other two states, seasonal peaks every six months were detected within a year. In conclusion, we showed that epidemic patterns are not homogeneous across the U.S, with major peaks of disease occurring through the year. These findings highlight the importance of coordinating alternative control strategies in different regions considering the prevailing epidemiological patterns.

Detection of influenza A virus in aerosols of vaccinated and non-vaccinated pigs in a warm environment

Today we are sharing a publication from the Torremorell lab regarding the impact of vaccination (both homologous and heterologous) on the detection of swine influenza virus in aerosols. The full publication is available in open access online on the PlosOne website.

Influenza A virus can be transmitted by direct and indirect contact and aerosols. Indeed, the virus has been detected and isolated from aerosols generated from pigs with and without immunity. Since then, there has been increased evidence of the role of aerosols in influenza transmission among swine.

Vaccination is used in swine populations as a strategy to mitigate clinical effects and the economic impact of influenza infections. It has also been proven to reduce shedding in pigs. Additionally, a study on the transmission of influenza in ferrets showed that high temperature may decrease the risk of airborne transmission. Therefore, we wondered if combining vaccination and high temperature would affect the detection of influenza virus in the air.

The objective of this study was to assess the effect of  vaccination on the generation of influenza A virus bioaerosols under warm conditions in pigs with varying degrees of cross-protective immunity.

Material and Methods

36 pigs of three weeks of age, seronegative for influenza were separated into four groups:

  1. vaccinated with an influenza strain identical to the one used for the challenge (homologous)
  2. vaccinated with a commercial vaccine containing multiple strains of influenza, all different from the challenge strain (heterologous, multivalent)
  3. vaccinated with a commercial vaccine containing one influenza strain different from the challenge strain (heterologous, monovalent)
  4. unvaccinated, which received an injection of saline instead

Pigs were challenged intranasally and intratracheally with a strain of H1N1 influenza virus, two weeks after the last vaccination.
Serum collected the day prior to the vaccination and at the end of the study 14 days post inoculation were tested via hemagglutination inhibition (HI) and ELISA.. Nasal swabs and oral fluids were collected and tested via PCR. Air samples were collected three times a day and tested via PCR and virus isolation. Temperature and humidity were recorded every five minutes.

Results

Hemagglutination inhibition and ELISA

Prior to infection, pigs in group 1 (Vaccinated, homologous) had significantly higher HI titers compared to the other three groups. In the group 3 (vaccinated, heterologous monvalent) 4 pigs had HI titers against the challenge strain, while pigs in groups 2 and 4 were negative against the challenge strain. All groups were HI positive against the challenge strain at necropsy, however HI titers were statistically different between group 4 and groups 1 and 3.

Proportion of pigs infected

The proportion of pigs infected was significantly higher in group 4 than in the vaccinated ones. Also, the percentage of infected pigs in group 1 was significantly lower than in group 2, but there was no difference with group 3.

Torremorell vacc pigs aerosol influenza proportion negative pigs
Proportion of negative pigs over time

Nasal swabs and oral fluids

Pigs in group 4 had higher amounts of nasal virus shedding most of the sampling days compared to vaccinated groups. Additionally, group 2 had higher levels of IAV compared with groups 1 and 4. Oral fluid results were in agreement with nasal swab.

 

Torremorell vacc pigs aerosol influenza nasal shedding
Nasal shedding over time

Air samples

All air samples in the vaccinated groups tested negative by RRT-PCR. Air samples collected at days 1, 2 and 3 from NON-VAC pigs tested positive by RRT-PCR but negative by virus isolation

Abstract

The 2009 influenza pandemic, the variant H3N2v viruses in agricultural fairs and the zoonotic poultry H5N9 infections in China have highlighted the constant threat that influenza A viruses (IAV) present to people and animals. In this study we evaluated the effect of IAV vaccination on aerosol shedding in pigs housed in warm environmental conditions. Thirty-six, three-week old weaned pigs were obtained from an IAV negative herd and were randomly allocated to one of 4 groups: 1) a homologous vaccine group, 2) a heterologous multivalent vaccine group, 3) a heterologous monovalent group and, 4) a non-vaccinated group. After vaccination pigs were challenged with the triple reassortant A/Sw/IA/00239/04 H1N1 virus. Environmental temperature and relative humidity were recorded throughout the study. Nasal swabs, oral fluids and air samples were collected daily. All samples were tested by RRT-PCR and virus isolation was attempted on positive samples. Average temperature and relative humidity throughout the study were 27°C (80°F) and 53%, respectively. A significantly higher proportion of infected pigs was detected in the non-vaccinated than in the vaccinated group. Lower levels of nasal virus shedding were found in vaccinated groups compared to non-vaccinated group and IAV was not detected in air samples of any of the vaccinated groups. In contrast, positive air samples were detected in the non-vaccinated group at 1, 2 and 3 days post infection although the overall levels were considered low most likely due to the elevated environmental temperature. In conclusion, both the decrease in shedding and the increase in environmental temperature may have contributed to the inability to detect airborne IAV in vaccinated pigs.

Vaccination against Lawsonia intracellularis decreases shedding of Salmonella enterica serovar Typhimurium in co-infected pigs changes the host gut microbiome

This is our Friday rubric: every week a new Science Page from the Bob Morrison’s Swine Health Monitoring Project. The previous editions of the science page are available on our website.

This week,  we are sharing the summary of a publication by  Dr. Fernando Leite who recently received his PhD from the University of Minnesota. The full scientific article regarding the effect of the vaccination against Lawsonia intracellularis on the shedding of Salmonella typhimurium and the host microbiome is available on open access in Nature.

Materials and Methods

A total of five treatment groups were used:

  1. challenged with S. Typhimurium alone,
  2. challenged with both S. Typhimurium and L. intracellularis,
  3. challenged with S. Typhimurium and vaccinated against L. intracellularis,
  4. challenged with both S. Typhimurium and L. intracellularis and vaccinated against L. intracellularis
  5. a non-infected control.

Results

The greatest difference in shedding level between groups was found at 7 days post-infection. At this time point, the co-challenged animals from the vaccinated group shed statistically less S. Typhimurium per gram of feces than the animals from the non-vaccinated, co-challenged group. The co-challenged vaccinated group also shed significantly less S. Typhimurium than the singly infected S. Typhimurium group.
L. intracellularis vaccination did not have a significant impact on S. Typhimurium shedding when animals were singly infected with S. Typhimurium.

Leite Ileitis vaccination salmonelle co infection

 

At 7 days post-infection, different treatment groups had significant differences in their microbiome community structure. The co-infected vaccinated group clustered apart from all other treatment groups.

Conclusion

These results indicate that vaccination against L. intracellularis impacts the microbiome and reduces shedding of S. Typhimurium in co-infected animals.