NHF: Enteroids as in vitro model for ileitis

Our new contribution to the National Hog Farmer was written by Dr. Talita Resende, a PhD candidate at the University of Minnesota under the supervision of Dr. Connie Gebhart. Talita’s research focuses on swine ileitis and models to better understand its pathogen: Lawsonia intracellularis. Today, she explains how she uses enteroids.

The small intestine is largely responsible for nutrient digestion and absorption in the gastrointestinal tracts of pigs, but it is also an ideal colonization site for enteric pathogens. The investigation of the interactions between host and enteric pathogens can be conducted in vivo, or in vitro, with advantages and disadvantages for each of the models. Enteroids, small intestinal organoids, represent a new in vitro approach to investigate those interactions. But why are enteroids a new approach and what are their advantages in comparison to the current models?

Enteroids are three-dimensional structures originated from embryonic stem cells, induced pluripotent cells or adult stem cells from intestinal tissue. Therefore, they present all the cell types and a structural organization similar to crypts and villi found in the small intestine. This complex structure offers ideal conditions to investigate the mechanisms by which Lawsonia intracellularis causes proliferative enteropathy – also known as ileitis – in pigs.

Science Page: Sow Herd Filter Study

This is our Friday rubric: every week a new Science Page from the Bob Morrison’s Swine Health Monitoring Project. The previous editions of the science page are available on our website.

This week,  we are sharing a note from Dr. Cesar Corzo who is starting a study on sow herd filtration and recruiting herds. The MSHMP mission goes beyond collecting data regarding swine herd disease status, it also includes research projects that are relevant to the swine community.

Objectives of the study

The objectives of the study are to describe the occurrence of PRRSv in the filtered sow herd population within MSHMP and to assess the associations between farm-level factors and the introduction of PRRSv into filtered sow herds. The results of the study may guide practitioners and veterinarians to modify their management and biosecurity practices in filtered sow herds.

Who can enroll?

All filtered sow herds of MSHMP participants will be eligible for the study. The database will be used together with the PRRSv incidence measure to understand occurrence of PRRS before and after filters were installed. A survey has been created to collect farm specific data such as:

  • Date when herd was filtered
  • Type of ventilation (negative or positive)
  • Back draft prevention methodology
  • Type of pre-filter and filter
  • Pre-filter and filter replacement frequency
  • Number of barns and load outs
  • Audit frequency
  • Frequency of gilt introduction and weaning events
  • Regional density

If you are interested in participating, please contact Dr. Cesar Corzo at corzo(at)umn.edu

Senecavirus A publications in English and in Spanish

A fair part of our audience originates from Spanish-speaking countries. Our researchers appreciate your support and your interest in our work. Recently, Drs. Matthew Sturos and Fabio Vannucci published an article in the journal Albeitar regarding Senecavirus A and its tropism for reproductive organs.

A quick summary of the article that can be found online in open access:

Se trata de un virus patógeno emergente en el ganado porcino. En este artículo se proporciona información general sobre el virus y el conocimiento actual de la patogénesis y las características de la enfermedad.

For our English-speaking readers, we recommend a previous publication on this page also by Dr. Sturos called Natural and experimentally-induced Senecavirus A infections in boars.

Happy reading!

Swine microbiome studies: Why, how and where are we going?

There is no Science Page this week; we will return to our normal schedule next week. In the meantime,  you may read our previous publications on our website.

Today, we will be talking about swine microbiome studies. Dr. Andres Gomez, expert in microbiome, who joined the University as part of the new AGREETT positions wrote an article for the National Hog Farmer about research on swine microbiome.

What does microbiome mean?

Microbiome refers to all of the microbes present in an area. For example, gut microbiome is the entire population of microorganisms (most of the time bacteria) present in the intestinal tract.

Microbes have been traditionally viewed through a lens of distrust, as pathogens affecting health. However, molecular and computational breakthroughs to study microbial diversity and function by sorting DNA sequences have presented a novel concept of an animal “flora” that acts as a friend as opposed to a foe.

Characterizing the microbiome to improve nutrition

Characterizing the specific microbes that increase or decrease in abundance upon pharmaceutical or dietary interventions is critical to determine precise dose-response relationships and to potentially reduce feed costs while achieving desired improvements in pig health and productivity.

Defining “healthy” microbiomes to identify poor-doing pigs

Regular “microbiome snapshots” along the most critical stages of pig growth (e.g., pre- and post-weaning), can be used to predict health and potential pathogen threats for disease by early identification of bacteria in slow-growing pigs or those that are at most risk of infection. This would allow producers to make early decisions on therapeutic or dietary interventions to enhance performance and health.

swine gut microbiome
 1) nutrients and feed additives modulate gut microbiomes to impact health and performance, 2) microbiomes across the pig anatomy are accurate biomarkers of stress such as diseases, early weaning, and heat, and 3) microbiomes in manure can be modulated to mitigate harmful gases.

Enhancing the protective microbiome

The microbiome in the gut or respiratory tract is a protective layer against infectious diseases. Thus, with microbiome research, we can determine how novel feed additives and management interventions work, by either enhancing the abundance of microbes that promote health and/or displacing those that cause disease.

Microbiome beyond pork production

For instance, specialized bacteria and fungi can degrade otherwise underutilized natural resources to maximize pig productivity, while decreasing the environmental footprint. Additionally, specialized microbial communities can also mitigate the production of dangerous gases  produced in manure pits.

Science Page: Why are we not making more progress to decrease PRRS incidence?

This is our Friday rubric: every week a new Science Page from the Bob Morrison’s Swine Health Monitoring Project. The previous editions of the science page are available on our website.

This week we are sharing a report by Dr. Clayton Johnson from Carthage Veterinary Services on PRRSV incidence and why it has not been decreasing as expected at the past few years.

Key points

  • Enhancing biosecurity increases the chances to prevent PRRS.
  • We have learnt to deal better with the disease and that is reflected by the reduction of the economic impact of PRRS
  • Choose the level of biosecurity that economically better fits to your risk.

In his report, Dr. Johnson identifies 3 main causes that PRRSV incidence is not decreasing.

  1. We can’t Prevent PRRS Infections
  2. PRRS Cost is Decreasing: Tools and Technologies for PRRS Infection Management are Improving
  3. PRRS Prevention Strategies aren’t Cost Effective

To learn more you can read the full report or take a look at Dr. Johnson’s presentation on this very same topic during the 2017 Leman conference:

Identification of antigenically important sites in Rotavirus B

Happy New Year to all of you readers of this blog! We appreciate your presence here. In 2018, we will bring you even more quality content related to swine health and production.

Our first publication of the year features the work of Frances Shepherd, a PhD student (who recently received an award at the CRWAD meeting) with Drs. Michael Murtaugh and Douglas Marthaler. The paper is in open access in the journal Pathogens and you can read it here.

Shepherd antigenically important sites in rotaviruses B

In this experiment, 174 clinical samples from US and Canadian swine herds and positive for rotavirus B by PCR were used to sequence the gene for the protein VP7.
VP7 is a protein of interest in rotaviruses B because it is structural and can be found on the outer layer of the virus capsid. Along with VP4, they stimulate the creation of neutralizing antibodies in pigs.

Based on those sequences, 169 of the viruses were allocated to 8 defined genotypes: G8, G11, G12, G14, G16, G17, G18, and G20. However, five strains had less than 80% similarity with those genotypes and were assigned to the new genotypes G22, G23 (2 strains), G24, and G25. The G16 genotype was the most prevalent genotype each year. The predominant genotypes clustered geographically, with G12 being predominant on the east coast, G16 in the Midwest, and G20 within the Great Plains states.

Rotaviruses B geographical distribution US
Distribution of Rotavirus B genotypes per state

Investigation of the variability within the VP7 proteins identified 8 variable regions. However, those regions did not align with the sites of high antigenicity detected in the predominant groups. Indeed, surface-exposed antigenic residues underwent negative selection more often than positive selection.

Abstract

Rotavirus B (RVB) is an important swine pathogen, but control and prevention strategies are limited without an available vaccine. To develop a subunit RVB vaccine with maximal effect, we characterized the amino acid sequence variability and predicted antigenicity of RVB viral protein 7 (VP7), a major neutralizing antibody target, from clinically infected pigs in the United States and Canada. We identified genotype-specific antigenic sites that may be antibody neutralization targets. While some antigenic sites had high amino acid functional group diversity, nine antigenic sites were completely conserved. Analysis of nucleotide substitution rates at amino acid sites (dN/dS) suggested that negative selection appeared to be playing a larger role in the evolution of the identified antigenic sites when compared to positive selection, and was identified in six of the nine conserved antigenic sites. These results identified important characteristics of RVB VP7 variability and evolution and suggest antigenic residues on RVB VP7 that are negatively selected and highly conserved may be good candidate regions to include in a subunit vaccine design due to their tendency to remain stable.

Best of Leman 2017 series #3: J. Lowe – Understanding cull sow movements in North America

We launched a new series on the blog in October. Once a month, we are sharing with you a presentation given at the 2017 Allen D. Leman swine conference, on topics that the swine group found interesting, innovative or that lead to great discussions.

Our third presented is from Dr. Jim Lowe from the University of Illinois on the movements of cull sows in North America and what it implies in terms of disease transmission.

To listen to this talk, please click on the picture below.

best-of-leam-jim-lowe-cull-sow-movements-in-america.gif

Happy holidays to you and your loved ones!