Science Page: Stability of Porcine Epidemic Diarrhea Virus on Fomite Materials at Different Temperatures

This is our Friday rubric: every week a new Science Page from the Bob Morrison’s Swine Health Monitoring Project. The previous editions of the science page are available on our website.

This week, we are sharing the summary of Dr. Cheeran’s team study on the stability of PEDv on fomite materials at different temperatures.

Key points:

  • Type of material and temperature have an impact on PEDV stability.
  • Infectious PEDV was not recovered from any fomite material after 2 days at room temperature (25ºC / 77ºF).
  • PEDV showed higher stability on plastic, cloth, Tyvek® coveralls, aluminum foil, Styrofoam at 4ºC (39.2ºF).
  • Virus could be detected by qRT-PCR from contaminated fomites even when infectivity was not observed.

PEDV survival on fomites Cheeran et al

Click here for our full post on the subject.

Stability of Porcine Epidemic Diarrhea Virus on Fomite Materials at Different Temperatures

Today, we are presenting a paper published by Dr. Maxim Cheeran‘s lab in Veterinary Sciences regarding the stability of PEDV on fomite materials at different temperatures.

The full article is available in open access on the journal’s website.

Porcine Epidemic Diarrhea virus and its transmission

Porcine epidemic diarrhea virus (PEDV) causes highly contagious viral enteritis in swine. In May 2013, a PEDV strain, genetically related to a Chinese strain, was introduced in the US and spread rapidly across the country causing high mortality in piglets. Over eight million pigs were killed during this outbreak, leading to an estimated loss of 1.8 billion US dollars.

Transmission of PEDV primarily occurs by the fecal-oral route, but indirect transmission can occur when an animal comes in contact with inanimate objects (fomites) contaminated with the feces of PEDV-infected animals.


200 μL of virus containing 2.1 × 106 TCID50/mL was applied on various fomite material: Styrofoam, nitrile gloves, cardboard, aluminum foil, Tyvek® coveralls, cloth, metal, rubber, and plastic. The virus-contaminated fomites were then stored at either 4◦C or at room temperature. Samples were then taken at 0,1 2, 5, 10, 15, 20 and 30 days post-contamination to test for virus stability.

PEDV survival on fomites Cheeran et al


Infectious PEDV was recovered from fomite materials for up to 15 days post application at 4◦C; only 1 to 2 logs of virus were inactivated during the first 5 days post application. On the other hand, PEDV survival decreased precipitously at room temperature within 1 to 2-days post application, losing 2 to 4 log titers within 24 h as can be seen on the figure above.

Immunoplaque assay was used to identify positive fomites after 20 days of storage at 4◦C. Immunoplaque assay is much more sensitive than PCR and can detect virus as low concentration as 24 focus forming units/mL. Titers of approximately 1 × 10^3 FFU/mL were observed in eluates from Styrofoam, metal, and plastic, representing a 3-log virus inactivation after 20 days. The surviving virus on Tyvek® coverall and rubber surfaces was moderately above detection limit (24 FFU/mL).


Indirect transmission of porcine epidemic diarrhea virus (PEDV) ensues when susceptible animals contact PEDV-contaminated fomite materials. Although the survival of PEDV under various pHs and temperatures has been studied, virus stability on different fomite surfaces under varying temperature conditions has not been explored. Hence, we evaluated the survival of PEDV on inanimate objects routinely used on swine farms such as styrofoam, rubber, plastic, coveralls, and other equipment. The titer of infectious PEDV at 4 °C decreased by only 1 to 2 log during the first 5 days, and the virus was recoverable for up to 15 days on Styrofoam, aluminum, Tyvek® coverall, cloth, and plastic. However, viral titers decreased precipitously when stored at room temperature; no virus was detectable after one day on all materials tested. A more sensitive immunoplaque assay was able to detect virus from Styrofoam, metal, and plastic at 20 days post application, representing a 3-log loss of input virus on fomite materials. Recovery of infectious PEDV from Tyvek® coverall and rubber was above detection limit at 20 days. Our findings indicate that the type of fomite material and temperatures impact PEDV stability, which is important in understanding the nuances of indirect transmission and epidemiology of PEDV.

Survival of porcine coronaviruses in feed ingredients and impact of feed additives

A lot of research has been done at the University of Minnesota regarding the survival of porcine coronaviruses in the feed and how to impact their survival. We are presenting today two papers published this spring looking at this important topic. First, Trudeau et al. showed that the feed ingredient which lead to the longest porcine coronaviruses’ survivability was soybean meal. Then, Cottingim et al. showed that some feed additives could inactivate PDCoV.

Importance of porcine coronaviruses and their relationship to swine feed

Porcine coronaviruses of importance in the swine industry nowadays are Porcine Epidemic Diarrhea virus (PEDV), Transmissible Gastroentiritis virus (TGEV), and Porcine Delta Coronavirus (PDCoV). All cause enteric issues in swine and some can lead to up to 100% mortality in nursing piglets. The role of feed ingredients in spreading PEDV and causing outbreaks in Northern America in 2013 has been questioned since then.

Survival of PEDV, TGEV, and PDCoV in complete feed and feed ingredients

The first research project evaluated the persistence of PEDV, TGEV, and PDCoV in porcine feed and feed ingredients. To do so, complete feed and major feed ingredients samples (spray dried porcine plasma, meat meal, meat and bone meal, blood meal, corn,
soybean meal, and corn dried distillers grains with solubles) where inoculated with PEDV, TGEV, or PDCoV and kept for up to 56 days. Aliquots were tested 11 times between the inoculation day and the end of the trial. Time necessary to reduce the viral concentration by 1 log was recorded.

Soybean meal took the longest time to attain the reduction in concentration for all of the coronaviruses, reaching 7.5 days for PEDV, and 42 days for both PDCoV and TGEV. This study also demonstrated that there was a modest positive correlation between moisture content and persistence of TGEV and PDCoV. On the other end, there was a moderate negative correlation between ether extract content and TGEV survival, not observed with the other two viruses.

Click on the banner below to access the full article in open access.

Trudeau coronavirus feed swine survival PED

Feed additives and PDCoV survival

In this second project, the survival of PDCoV was evaluated after being put in contact with nursery feed samples containing one of six different commercial feed acids (UltraAcid P, Activate DA, KEMGEST, Acid Booster, Luprosil, and Amasil), salt, or sugar. Acids were added following the recommended concentrations in the first part of the experiment and then, were double-dosed. Feed samples were inoculated with PDCoV and kept for up to 35 days. Like in the previous article, days to achieve a reduction of virus concentration by 1 log were recorded.

At recommended values, there was no difference between viral load reduction in feed samples with or without additives. When acids were added to the feed at a double concentration, the time period to attain the reduction in viral load was decreased to 0.28 days or less for all acids except for Amasil which increased it to 4.95 days (control: 0.35 days). The difference between acidifiers may be explained by the active ingredients used in the products. Furthermore, the addition of salt decreased PDCoV survival whereas sugar increased it.

Click on the banner below to access the full article in open access.

Cottingim feed additives survival PDCoV coronavirus swine