How much floor space does a pregnant sow need in a group-housing system with electronic sow feeders?

floor-allowance-gestating-sows
Sows housed in groups at the UMN facility in Morris

The University of Minnesota – Morris owns a swine research facility which provides an excellent set up to study the behavior of sows housed in groups. In the past few years, swine producers have committed to change the conditions in which the sows are housed in farms and to keep them in groups where they can interact with each other instead of housing them individually. Putting sows in group reminded us that pigs need a hierarchy and that they will compete and fight to establish it. Because space allowance can impact sows behavior we wondered what the optimum floor space is.

Read the entire report on floor space allowance for sows by Dr. Yuzhi Li

Determining floor space allowance for gestating sows can be controversial because more floor space allowance means low output per square footage of the barn and will potentially reduce profitability for producers. On the other hand, floor space allowance less than sow requirement can compromise sow welfare and performance. To answer the question in the title of this article, we conducted a two-year project (titled ‘Determining the Minimal Floor Space Allowance for Gestating Sows Kept in Pens with Electronic Sow Feeders’). The project was partially sponsored by the National Pork Board, and the research team includes Yuzhi Li and Lee Johnston from the WCROC in Morris, and Sam Baidoo from the SCROC (Southern Research and Outreach Center) in Waseca.[…]

 

The 2017 Allen D. Leman swine conference starts in a week!

Are you ready for the 2017 Leman conference? Come see us starting September 16th at the Saint Paul RiverCentre.

Why come to the Leman conference?

  • For the scientific program built around science-driven solutions, with international speakers
  • For the networking opportunities with hundreds of participants from the swine industry
  • Continuing Education credits available for veterinarians
  • Flu vaccination clinic sponsored by Newport Laboratories

cfs_lemanswine_web_hdr_1200x200

Who should attend the Allen D. Leman swine conference?

Swine veterinarians and other professionals working in swine production and animal health management are welcome to attend.

This year in the program:

  • Dr. Bob Thompson to receive the Science in Practice award sponsored by Boehringer Ingelheim
  • Honoring Dr. Bob Morrison’s legacy: Monday September 18th, 8am and 6pm
  • New DVM student session centered around problem-solving skills: Sunday 17th
  • Keynote presentations:
    • Gary Louis and Luc Dufresne from Seaboard Foods, Challenges in defining the Greater Good
    • Noel Williams: Why does the pork industry needs coopetition?
    • Rebecca Liu: Cooperation, Competition and coopetition
    • Tim Roufs: Nutrition and Eating: Understanding why and how we eat

We are looking forward to seeing you next week but if you cannot make it, make sure to come see us next year: Sept 15-18, 2018!

M.hyopneumoniae: knowledge gaps for improved disease control

Enzootic pneumoniae is a chronic respiratory disease caused by Mycoplasma hyopneumoniae in pigs. It has been present in the industry for decades and causes significant economic losses. Yet, control methods like vaccination have not been able to contain the disease. Why is that? What information are we missing to design more effective control methods? This is the goal of the review paper co-authored by Dr. Maria Pieters from the University of Minnesota.

Focusing on various aspects of the disease like epidemiology, pathogenicity, diagnostics, and control measures, this publication regroups all the knowledge we currently have of Mycoplasma hyopneumoniae and identifies what we need to investigate to improve disease control.

Click on the banner below to access the full article.

Update on Mhyopneumoniae infections in pig Pieters 2017

Abstract:

Mycoplasma hyopneumoniae (M. hyopneumoniae) is the primary pathogen of enzootic pneumonia, a chronic respiratory disease in pigs. Infections occur worldwide and cause major economic losses to the pig industry. The present paper reviews the current knowledge on M. hyopneumoniae infections, with emphasis on identification and analysis of knowledge gaps for optimizing control of the disease. Close contact between infected and susceptible pigs is the main route of M. hyopneumoniae transmission. Management and housing conditions predisposing for infection or disease are known, but further research is needed to better understand M. hyopneumoniae transmission patterns in modern pig production systems, and to assess the importance of the breeding population for downstream disease control. The organism is primarily found on the mucosal surface of the trachea, bronchi and bronchioles. Different adhesins and lipoproteins are involved in the adherence process. However, a clear picture of the virulence and pathogenicity of M. hyopneumoniae is still missing. The role of glycerol metabolism, myoinositol metabolism and the Mycoplasma Ig binding protein—Mycoplasma Ig protease system should be further investigated for their contribution to virulence. The destruction of the mucociliary apparatus, together with modulating the immune response, enhances the susceptibility of infected pigs to secondary pathogens. Clinical signs and severity of lesions depend on different factors, such as management, environmental conditions and likely also M. hyopneumoniae strain. The potential impact of strain variability on disease severity is not well defined. Diagnostics could be improved by developing tests that may detect virulent strains, by improving sampling in live animals and by designing ELISAs allowing discrimination between infected and vaccinated pigs. The currently available vaccines are often cost-efficient, but the ongoing research on developing new vaccines that confer protective immunity and reduce transmission should be continued, as well as optimization of protocols to eliminate M. hyopneumoniae from pig herds.

Science page: Are patterns of spatiotemporal clustering of PRRSv consistent across years?

This is our Friday rubric: every week a new Science Page from the Bob Morrison’s Swine Health Monitoring Project. The previous editions of the science page are available on our website.

This week, we studied a subset of MSHMP participants located in the Midwest to test if some location/time combinations are more prominent during certain seasons across the years. Data from 358 farms in 10 management systems from 2011 to 2015 was compiled to look for clusters.

The clusters found by the SaTScanTM software are represented below. The red circles represent clusters identified in the time period from January to June, whereas blue ones are July to December. We can note that clusters were identified every year but that they varied with time.

Significant PRRS spatial cluster midwest
Significant spatial clusters for PRRSV in the Midwest between 2011 and 2015.

Key points

  • PRRS cases are recognized to be seasonal and aggregated by geographical space.
  • However, spatiotemporal patterns of PRRS clustering were not consistent across years.
  • Drivers of infection spread may vary over the years.

Future uses for this model can be found in the entire report