What is the antimicrobial susceptibility of US Brachyspira species?

To answer this question, Drs. Mirajkar, Davies, and Gebhart from the University of Minnesota, collected a total of 124 field isolates originating from all over the country. In this study, four different Brachyspira species were evaluated for their susceptibility against the main antimicrobial medicines used in swine production. Overall the US isolates had the tendency to be less resistant to antimicrobials than were isolates from other countries. However, low susceptibility to lincomycin and to tylosin were noted in the domestic strains. Lastly, the authors raised the question of the lack of  Clinical and Laboratory Standards Institute-approved clinical breakpoints for Brachyspira species which, by categorizing an isolate as sensitive, intermediate, or resistant, would be a tremendous help in determining the best treatment and control strategies at the farm level .

Mirajkar antimicrobial susceptibility brachyspira

Abstract: Outbreaks of swine dysentery, caused by Brachyspira hyodysenteriae and the recently discovered “Brachyspira hampsonii,” have reoccurred in North American swine herds since the late 2000s. Additionally, multiple Brachyspira species have been increasingly isolated by North American diagnostic laboratories. In Europe, the reliance on antimicrobial therapy for control of swine dysentery has been followed by reports of antimicrobial resistance over time. The objectives of our study were to determine the antimicrobial susceptibility trends of four Brachyspira species originating from U.S. swine herds and to investigate their associations with the bacterial species, genotypes, and epidemiological origins of the isolates. We evaluated the susceptibility of B. hyodysenteriae, B. hampsonii, Brachyspira pilosicoli, and Brachyspira murdochii to tiamulin, valnemulin, doxycycline, lincomycin, and tylosin by broth microdilution and that to carbadox by agar dilution. In general, Brachyspira species showed high susceptibility to tiamulin, valnemulin, and carbadox, heterogeneous susceptibility to doxycycline, and low susceptibility to lincomycin and tylosin. A trend of decreasing antimicrobial susceptibility by species was observed (B. hampsonii > B. hyodysenteriae > B. murdochii > B. pilosicoli). In general, Brachyspira isolates from the United States were more susceptible to these antimicrobials than were isolates from other countries. Decreased antimicrobial susceptibility was associated with the genotype, stage of production, and production system from which the isolate originated, which highlights the roles of biosecurity and husbandry in disease prevention and control. Finally, this study also highlights the urgent need for Clinical and Laboratory Standards Institute-approved clinical breakpoints for Brachyspira species, to facilitate informed therapeutic and control strategies.

Link to the full article

Effect of different treatments on the inactivation of Porcine Epidemic Diarrhea virus (PEDv) in swine feed

Last Friday, a team of UMN swine nutritionists and veterinarians published the results of their research on the effect of thermal treatments and additives on the inactivation and survival of Porcine Epidemic Diarrhea virus (PEDv) in swine feed. They concluded that both the addition of feed additives and thermal treatments decreased PEDv load in the feed.


Fig 1. Inactivation of PEDV in complete feed when exposed to thermal processing.
The inactivation curves determined by the Weibull model for the survival of PEDV in complete feed at 120°C, 130°C, 140°C, and 145°C.


Abstract: Infection with porcine epidemic diarrhea virus (PEDV) causes diarrhea, vomiting, and high mortality in suckling pigs. Contaminated feed has been suggested as a vehicle of transmission for PEDV. The objective of this study was to compare thermal and electron beam processing, and the inclusion of feed additives on the inactivation of PEDV in feed. Feed samples were spiked with PEDV and then heated to 120–145°C for up to 30 min or irradiated at 0–50 kGy. Another set of feed samples spiked with PEDV and mixed with Ultracid P (Nutriad), Activate DA (Novus International), KEM-GEST (Kemin Agrifood), Acid Booster (Agri-Nutrition), sugar or salt was incubated at room temperature (~25°C) for up to 21 days. At the end of incubation, the virus titers were determined by inoculation of Vero-81 cells and the virus inactivation kinetics were modeled using the Weibull distribution model. The Weibull kinetic parameter delta represented the time or eBeam dose required to reduce virus concentration by 1 log. For thermal processing, delta values ranged from 16.52 min at 120°C to 1.30 min at 145°C. For eBeam processing, a target dose of 50 kGy reduced PEDV concentration by 3 log. All additives tested were effective in reducing the survival of PEDV when compared with the control sample (delta = 17.23 days). Activate DA (0.81) and KEM-GEST (3.28) produced the fastest inactivation. In conclusion, heating swine feed at temperatures over 130°C or eBeam processing of feed with a dose over 50 kGy are effective processing steps to reduce PEDV survival. Additionally, the inclusion of selected additives can decrease PEDV survivability.

Link to the full article

Reduction of Porcine Circovirus type 2 prevalence in the US due to vaccination

Dr. Mike Murtaugh’s team just recently published a scientific article in Veterinary Microbiology assessing the difference in Porcine Circovirus type 2 (PCV2) prevalence in the US between 2006 and 2012. The conclusion of their study is that the widespread utilization of effective vaccines dramatically decreased  the prevalence of the virus in American herds.

Abstract: Porcine circovirus type 2 (PCV2), a small, single-stranded circular DNA virus and the causative agent of porcine circovirus associated disease (PCVAD), was first observed in the mid-1990s in pigs with a post-weaning wasting disease. In 2006 the number of PCVAD cases greatly increased, marking it as an important viral pathogen for the United States (US) swine industry. PCV2 vaccines were introduced to the US in 2006 in response to widespread outbreaks of PCVAD. These vaccines were effective in preventing disease, but did not eliminate virus from the animals. In 2006, prior to vaccine use, a study of PCV2 prevalence in pig herds across the US was performed in conjunction with the US National Animal Health Monitoring System. In 2012, 6 years after widespread PCV2 vaccination, this study was repeated. Since the introduction of PCV2 vaccines in 2006, viral presence and viral loads have greatly decreased, and a genotypic shift dominated by PCV2b has occurred. Antibody levels have decreased in the pig population, but approximately 95% of sites continue to be antibody-positive. Widespread vaccination has controlled PCVAD and decreased PCV2 prevalence to the point that viremia is not detected on many sites. Thus, continued vaccination may lead to PCV2 elimination in the national herd over time.

Link to the full article

North American swine rotaviruses: a complex epidemiology

A scientific paper published today in PLOS ONE reveals that based on three-level mixed-effects logistic regression models, the epidemiology of swine rotaviruses in North America is quite complex. The goal of the study led by Drs. Homwong, Perez, Rossow, and Marthaler from the University of Minnesota was to investigate the associations among age, rotavirus detection, and regions within the US swine production in samples submitted for diagnosis to the Minnesota Veterinary Diagnostic Laboratory.


Percentages of Rotavirus A (RVA), Rotavirus B (RVB), and Rotavirus C (RVC) samples by state.
The color represented highest prevalence of the RV species (green represents RVA, purple represents RVB, blue represents RVC while pink represents equal percentages of RVA and RVC

Abstract: Rotaviruses (RV) are important causes of diarrhea in animals, especially in domestic animals. Of the 9 RV species, rotavirus A, B, and C (RVA, RVB, and RVC, respectively) had been established as important causes of diarrhea in pigs. The Minnesota Veterinary Diagnostic Laboratory receives swine stool samples from North America to determine the etiologic agents of disease. Between November 2009 and October 2011, 7,508 samples from pigs with diarrhea were submitted to determine if enteric pathogens, including RV, were present in the samples. All samples were tested for RVA, RVB, and RVC by real time RT-PCR. The majority of the samples (82%) were positive for RVA, RVB, and/or RVC. To better understand the risk factors associated with RV infections in swine diagnostic samples, three-level mixed-effects logistic regression models (3L-MLMs) were used to estimate associations among RV species, age, and geographical variability within the major swine production regions in North America. The conditional odds ratios (cORs) for RVA and RVB detection were lower for 1–3 day old pigs when compared to any other age group. However, the cOR of RVC detection in 1–3 day old pigs was significantly higher (p < 0.001) than pigs in the 4–20 days old and >55 day old age groups. Furthermore, pigs in the 21–55 day old age group had statistically higher cORs of RV co-detection compared to 1–3 day old pigs (p < 0.001). The 3L-MLMs indicated that RV status was more similar within states than among states or within each region. Our results indicated that 3L-MLMs are a powerful and adaptable tool to handle and analyze large-hierarchical datasets. In addition, our results indicated that, overall, swine RV epidemiology is complex, and RV species are associated with different age groups and vary by regions in North America.

Link to the full article

Monitoring the spread of enteric coronavirus

Drs. Perez, Alba, Goede, and Morrison published a new scientific paper in the journal Frontiers in Veterinary Science concerning the spread of the enteric coronaviruses in the United states.

Perez Alba Morrison corona spread 2016

Abstract: The reporting and monitoring of swine enteric coronavirus diseases (SECD), including porcine epidemic diarrhea virus and porcine delta coronavirus, in the United States have been challenging because of the initial absence of a regulatory framework and the emerging nature of these diseases. The National Animal Health Laboratory Network, the Emergency Management and Response System, and the Swine Health Monitoring Project were used to monitor the disease situation between May 2013 and March 2015. Important differences existed between and among them in terms of nature and extent of reporting. Here, we assess the implementation of these systems from different perspectives, including a description and comparison of collected data, disease metrics, usefulness, simplicity, flexibility, acceptability, representativeness, timeliness, and stability. This assessment demonstrates the limitations that the absence of premises identification imposes on certain animal health surveillance and response databases, and the importance of federally regulated frameworks in collecting accurate information in a timely manner. This study also demonstrates the value that the voluntary and producer-organized systems may have in monitoring emerging diseases. The results from all three data sources help to establish the baseline information on SECD epidemiological dynamics after almost 3 years of disease occurrence in the country.

Link to the full article