Senecavirus A is still with us!

We are continuing our series on Senecavirus A this week with the latest paper written in our rubric for the National Hog Farmer.

Senecavirus is still with us NHF sept 17

More than 230 Senecavirus outbreaks have been confirmed after July 2015 in the United States and this is why it is important:

“The clinical signs in pigs infected with vesicular disease caused by SVA are variable and can range from no outward signs, to nonspecific signs such as decreased appetite or fever, or pigs may develop vesicles, or blisters, on the skin or in the mouth.[..]

While SVA continues to plague U.S. and global pork producers, it is important to be reminded of and understand some basic characteristics and behavior of this virus. SVA causes vesicular lesions affecting the skin, mouth and feet of pigs of all ages and has been associated with increased neonatal mortality which may be accompanied by neonatal diarrhea. If vesicular disease is present, your state animal health official must be notified in order to rule out other foreign animal diseases, such as FMD. The virus can be detected in multiple sample types but there is variability in the amount of time for which each sample type can be used for detection. Finally, SVA is extremely stable and contaminated facilities, transport vehicles and fomites are concerns for possible virus transmission but several disinfectants have been shown to be effective at neutralizing the virus.”

Longitudinal study of Senecavirus shedding and viremia in sows and piglets

How long do sows and piglets shed Senecavirus A after a clinical outbreak? How long is the viremia? Those are the questions answered in this case study of a Senecavirus A outbreak in one US farm.

Objective and Methods

Senecavirus A is a challenge for producers and veterinarians because of its clinical similarity to Food and Mouth Disease (FMD). In this study, 34 sows and 30 individual piglets from 15 different litters were sampled at day 1 post-outbreak and later at 1, 2, 3, 4, 6, and 9 weeks post-outbreak (PO). Serum, and tonsil, rectal, and vesicular swabs were collected for all of the pigs included in the study. The objective of the study was to explore the viremia and shedding patterns in those infected animals. All samples were submitted to the University of Minnesota, Veterinary Diagnostic Laboratory to be tested by PCR.

longitudinal study of senecavirus figures Tousignant 2017.gif
Percentage of serum (a), tonsil swabs (b), and rectal swabs (c) positive for Senecavirus A. Clinical outbreak happened in sow farm 1 (S1) and piglets from sow farm 2 (S2) were mixed with piglets from S1 at weaning.

 

Results

Vesicular lesions were seen in sows only for 2 weeks and had the highest amount of virus. In sows, the detection of Senecavirus A in tonsil and rectal swabs was greater than 90% at 0 week PO and remained as high as 50% through 5 weeks PO. Generally, viremia was detected up to 1 week PO in sows but it is important to note that viremia was not detected in 11 out of 34 (32%) of the sows at any point during the study. Viremia was detected in 18 out of 30 (60%) and 19 out of 30 (63%) in the suckling piglets from site 1. Similar to sows, viremia was not detected in 9 out of 30 (30%) of the site 1 piglets enrolled in the study.

The detection of Senecavirus A in sows tonsil swabs peaked 1 week PO (94% positive) whereas it peaked at day 1 PO for piglets (83% positive). The detection of virus shedding decreased over time in sows and piglets, and a single sow and piglet tested positive at 9 weeks PO.

The peak of Senecavirus A detection from rectal swabs in sows (91%) occurred at day 1 PO and continued to steadily decrease and was not detected at 9 weeks PO. In site 1 piglets, the detection of SVA peaked at 1 week PO (90% positive). 64% of the rectal swabs were positive at 4 weeks PO in site 1 piglets. At 6 weeks PO, the detection of Senecavirus A was same for both site 1 and 2 piglets (11%); however, a single piglet from site 1 was still shedding SVA at 9 weeks PO.

Discussion

The study assessed the shedding pattern of SVA in sows and piglets during an outbreak on a farm in the US and investigated the spread of SVA between pigs during the post weaning period. Vesicular lesions were seen in sows only for 2 weeks and had the highest amount of virus. In sows, the detection of SVA in tonsil and rectal swabs was greater than 90% at 0 week PO and remained as high as 50% through 5 weeks PO, these sample types should be collected and submitted, in addition to vesicular lesion swabs and fluid (if present), as part of FAD investigations for the detection of SVA.

 

Click on the banner below to access the full article.

longitudinal study of senecavirus Tousignant 2017

Abstract

Background: The study highlights the shedding pattern of Senecavirus A (SVA) during an outbreak of vesicular disease in a sow farm from the South-central Minnesota, USA. In this study, 34 individual, mixed parity sows with clinical signs of vesicular lesions and 30 individual piglets from 15 individual litters from sows with vesicular lesions were conveniently selected for individual, longitudinal sampling. Serum, tonsil, rectal, and vesicular swabs were collected on day 1 post outbreak, and then again at 1, 2, 3, 4, 6, and 9 weeks post outbreak. Samples were tested at the University of Minnesota Veterinary Diagnostic Laboratory for SVA via Real Time Polymerase Chain Reaction (RT-PCR)
Results: In sows, vesicular lesions had the highest concentration of SVA, but had the shortest duration of detection lasting only 2 weeks. Viremia was detected for 1 week post outbreak, and quickly declined thereafter. SVA was detected at approximately the same frequency for both tonsil and rectal swabs with the highest percentage of SVA positive samples detected in the first 6 weeks post outbreak. In suckling piglets, viremia quickly declined 1 week post outbreak and was prevalent in low levels during the first week after weaning (4 weeks post outbreak) and was also detected in piglets that were co-mingled from a SVA negative sow farm. Similar to sows, SVA detection on rectal and tonsil swabs in piglets lasted approximately 6 weeks post outbreak.
Conclusion: The study illustrates the variation of SVA shedding patterns in different sample types over a 9 week period in sows and piglets, and suggests the potential for viral spread between piglets at weaning.

Detecting Senecavirus A in tissues: development of a new diagnostic test at the University of Minnesota

Summary

In Canada and the USA alike, Senecavirus A is a challenge for producers and veterinarians because of its clinical similarity to Food and Mouth Disease (FMD). Indeed, Senecavirus A, is a causative agent of swine vesicular disease with lesions developing on the snout, around the mouth and on the coronary band of the feet. Therefore, being able to differentiate Senecavirus A infections from FMD rapidly is of utmost importance to be able to take the appropriate measures.

In the past months, several diagnostic tests have been developed at the University of Minnesota to detect antibodies against Senecavirus A. The difference between those tests and the in situ hybridization (ISH) described here is that ISH targets the genetic material included in the viral particle and marks it as a red spot as can be seen on the figure below. This advantage of this method is to be able to locate the virus and gives additional information to researcher wanting to study the behavior of Senecavirus A in the body of the pig.

in situ hybridization senecavirus A pigs
Red dots and clusters represent the presence of SVV mRNA within an erosive lesion on the tongue of a pig © 2017 Resende et al.

Abstract

Seneca Valley virus (SVV) is the causative agent of an emerging vesicular disease in swine, which is clinically indistinguishable from other vesicular diseases such as foot-and-mouth disease. In addition, SVV has been associated with neonatal mortality in piglets. While a commercial SVV qRT-PCR is available, commercial antibodies are lacking to diagnose SVV infections by immunohistochemistry (IHC). Thus, a novel in situ hybridization technique—RNAscope (ISH) was developed to detect SVVRNA in infected tissues. From a total of 78 samples evaluated, 30 were positive by qRT-PCR and ISH-RNA, including vesicular lesions of affected sows, ulcerative lesions in the tongue of piglets and various other tissues with no evidence of histological lesions. Nineteen samples were negative for SVV by qRT-PCR and ISH-RNA. The Ct values of the qRT-PCR from ISH-RNA positive tissues varied from 12.0 to 32.6 (5.12 x 106 to 5.31 RNA copies/g, respectively). The ISH-RNA technique is an important tool in diagnosing and investigating the pathogenesis of SVV and other emerging pathogens.

Link to the full article

Webinar on Senecavirus A from Dr. Sturos tomorrow 03/28 at 4pm

Matt Sturos
Dr. Matt Sturos

Dr. Matt Sturos, diagnostic pathologist at the University of Minnesota, Veterinary Diagnostic Laboratory will be presenting the latest information on Senecavirus A in swine, tomorrow at 4pm in a learning session organized by the Minnesota Veterinary Medical Association (MVMA). Participants can join in person at the MVMA conference room or online via WebEX.

 

More information here

Efficacy of three disinfectants against Senecavirus A on five surfaces and at two temperatures

What disinfectant to use against Senecavirus A? Does it vary based on surface type or temperature? These are the questions that a group of researchers from the University of Minnesota – Veterinary Diagnostic Laboratory are answering in the latest issue of the Journal of Swine Health and Production (JSHAP).

The project tested:
3 disinfectants: Household bleach, a phenolic disinfectant, and a quaternary ammoniun-aldehyde
5 surfaces: aluminium, stainless steel, rubber, cement, and plastic
2 temperatures: 25°C (77F) and 4°C (39F)

singh-et-al-2017-disinfectants-against-senecavirus-a

Summary
Objectives: To evaluate the virucidal efficacy of three commercial disinfectants against Senecavirus A (SVA) on five different surfaces at ~25°C and 4°C.
Materials and methods: Household bleach, a phenolic disinfectant, and a quaternary ammonium-aldehyde disinfectant were tested at manufacturer’s recommended concentrations against a contemporary strain of SVA on aluminum, stainless steel, rubber, cement, and plastic surfaces at ~25°C and 4°C. Virus propagation and titration were performed on swine testicular cells. Viral titers were calculated before and after exposure to the disinfectant being tested.
Results: At ~25°C, household bleach at 1:20 dilution inactivated ≥ 99.99% of the virus within 10 to 15 minutes on aluminum, rubber, and plastic. On stainless steel and cured cement, it inactivated 99.97% and 99.98% of the virus, respectively. At 4°C, bleach inactivated ≥ 99.99% of the virus within 5 to15 minutes on all surfaces except rubber; on rubber, inactivation was 99.91% after 15 minutes. The phenolic disinfectant at the manufacturer’s recommended concentration inactivated only ≤ 82.41% of the virus at either temperature and on any surface, even after a 60-minute contact time. Results for the quaternary ammonium disinfectant were intermediate: 78.12% to 99.81% of the virus was inactivated within 60 minutes at both temperatures and on all surfaces. To detect differences between disinfectants, paired Wilcoxon tests were performed. At 10- and 15-minute time points, efficacies of the three disinfectants differed significantly.
Implications: Significant variation exists in the antiviral efficacies of different disinfectants. Hence, they should be tested against various pathogens before use in the field.

Link to the full article

A new indirect ELISA to identify antibodies against Senecavirus A is now available at the UMN-VDL

dvorak-elisa-senecavirus-a
Today, we are very pleased to report that a new indirect ELISA to identify Senecavirus A antibodies has been validated at the University of Minnesota and is now available for our Veterinary Diagnostic Laboratory clients. This ELISA targets specifically antibodies against Viral Protein 2 (VP2) and has a sensitivity of 94.2% and a specificity of 89.7%. The test does not cross react with antibodies against Foot-and-Mouth Disease allowing for a quick differentiation between a Senecavirus A outbreak and a costly foreign animal disease.
elisa-types
Fig 1: Different ELISA types (Source: nptel.ac.in)
Abstract
Background: Senecavirus A (SVA), a member of the family Picornaviridae, genus Senecavirus, is a recently identified single-stranded RNA virus closely related to members of the Cardiovirus genus. SVA was originally identified as a cell culture contaminant and was not associated with disease until 2007 when it was first observed in pigs with Idiopathic Vesicular Disease (IVD). Vesicular disease is sporadically observed in swine, is not debilitating, but is significant due to its resemblance to foreign animal diseases, such as foot-and-mouth disease (FMD), whose presence would be economically devastating to the United States. IVD disrupts swine production until foreign animal diseases can be ruled out. Identification and characterization of SVA as a cause of IVD will help to quickly rule out infection by foreign animal diseases.
Methods: We have developed and characterized an indirect ELISA assay to specifically identify serum antibodies to SVA. Viral protein 1, 2 and 3 (VP1, VP2, VP3) were expressed, isolated, and purified from E. coli and used to coat plates for an indirect ELISA. Sera from pigs with and without IVD symptoms as well as a time course following animals from an infected farm, were analyzed to determine the antibody responses to VP1, VP2, and VP3.
Results: Antibody responses to VP2 were higher than VP1 and VP3 and showed high affinity binding on an avidity ELISA. ROC analysis of the SVA VP2 ELISA showed a sensitivity of 94.2% and a specificity of 89.7%. Compared to IFA, the quantitative ELISA showed an 89% agreement in negative samples and positive samples from 4–60 days after appearance of clinical signs. Immune sera positive for FMDV, encephalomyocarditis virus, and porcine epidemic diarrhea virus antibodies did not cross-react.
Conclusions: A simple ELISA based on detection of antibodies to SVA VP2 will help to differentially diagnose IVD due to SVA and rule out the presence of economically devastating foreign animal diseases.

Link to the full article

Development and validation of a competitive ELISA as a screening test for Senecavirus A

An article published in the Journal of Veterinary Diagnostic Investigation (JVDI) presents a competitive Enzyme-Linked ImmunoSorbent Assay (cELISA) and a virus neutralization test (VNT), both validated for the screening of Senecavirus A in a research setting, by the National Centre for Foreign Animal disease (NCFAD). The diagnostic specificity and sensitivity were 98.2% and 96.9% for the cELISA, and 99.6% (99.0–99.9%) and 98.2% (95.8–99.4%) for the VNT, respectively.

In Canada and the USA alike, Senecavirus A is a challenge for producers and veterinarians because of its clinical similarity to Food and Mouth Disease (FMD). Indeed, Senecavirus A, is a causative agent of swine vesicular disease with lesions developing on the snout, around the mouth and on the coronary band of the feet. Therefore, being able to differentiate Senecavirus A infections from FMD rapidly is of utmost importance to be able to take the appropriate measures.

The University of Minnesota, Veterinary Diagnostic Laboratory has developed an ImmunoFluorescence Assay (IFA) to detect antibodies against Senecavirus A. This test was used as a reference for the validation of the cELISA and VNT established by Drs. Goolia, Yang, Babiuk, and Nfon from NCFAD in collaboration with Drs. Vannucci and Patnayak from the UMN-VDL.

celisa-vnt-senecavirus-a-vannucci

Abstract: Senecavirus A (SVA; family Picornaviridae) is a nonenveloped, single-stranded RNA virus associated with idiopathic vesicular disease (IVD) in swine. SVA was detected in pigs with IVD in Brazil, United States, Canada, and China in 2015, triggering the need to develop and/or validate serologic assays for SVA. Our objective was to fully validate a previously developed competitive enzyme-linked immunosorbent assay (cELISA) as a screening test for antibodies to SVA. Additional objectives included the development and validation of a virus neutralization test (VNT) as a confirmatory test for SVA antibody detection, and the comparison of the cELISA, VNT, and an existing immunofluorescent antibody test (IFAT) for the detection of SVA antibodies in serial bleeds from SVA outbreaks. The diagnostic specificity and sensitivity were 98.2% (97.2–98.9%) and 96.9% (94.5–98.4%) for the cELISA, and 99.6% (99.0–99.9%) and 98.2% (95.8–99.4%) for the VNT, respectively. There was strong agreement among cELISA, VNT, and IFAT when compared based on kappa coefficient. Based on these performance characteristics, these tests are considered suitable for serologic detection of SVA in pigs.

Link to the entire article