Swine microbiome studies: Why, how and where are we going?

There is no Science Page this week; we will return to our normal schedule next week. In the meantime,  you may read our previous publications on our website.

Today, we will be talking about swine microbiome studies. Dr. Andres Gomez, expert in microbiome, who joined the University as part of the new AGREETT positions wrote an article for the National Hog Farmer about research on swine microbiome.

What does microbiome mean?

Microbiome refers to all of the microbes present in an area. For example, gut microbiome is the entire population of microorganisms (most of the time bacteria) present in the intestinal tract.

Microbes have been traditionally viewed through a lens of distrust, as pathogens affecting health. However, molecular and computational breakthroughs to study microbial diversity and function by sorting DNA sequences have presented a novel concept of an animal “flora” that acts as a friend as opposed to a foe.

Characterizing the microbiome to improve nutrition

Characterizing the specific microbes that increase or decrease in abundance upon pharmaceutical or dietary interventions is critical to determine precise dose-response relationships and to potentially reduce feed costs while achieving desired improvements in pig health and productivity.

Defining “healthy” microbiomes to identify poor-doing pigs

Regular “microbiome snapshots” along the most critical stages of pig growth (e.g., pre- and post-weaning), can be used to predict health and potential pathogen threats for disease by early identification of bacteria in slow-growing pigs or those that are at most risk of infection. This would allow producers to make early decisions on therapeutic or dietary interventions to enhance performance and health.

swine gut microbiome
 1) nutrients and feed additives modulate gut microbiomes to impact health and performance, 2) microbiomes across the pig anatomy are accurate biomarkers of stress such as diseases, early weaning, and heat, and 3) microbiomes in manure can be modulated to mitigate harmful gases.

Enhancing the protective microbiome

The microbiome in the gut or respiratory tract is a protective layer against infectious diseases. Thus, with microbiome research, we can determine how novel feed additives and management interventions work, by either enhancing the abundance of microbes that promote health and/or displacing those that cause disease.

Microbiome beyond pork production

For instance, specialized bacteria and fungi can degrade otherwise underutilized natural resources to maximize pig productivity, while decreasing the environmental footprint. Additionally, specialized microbial communities can also mitigate the production of dangerous gases  produced in manure pits.

Metabolites, antibiotimicrobials, and gut microbiome

salmonella.jpg
Salmonella Bacteria, Source: NIAID

In this article published by the National Hog Farmer, nutritionists and microbiome analysts from the University of Minnesota discuss what consequences antimicrobials can have on the gut microbiome.

What does microbiome mean?

Microbiome refers to all of the microbes present in an area. For example, gut microbiome is the entire population of microorganisms (most of the time bacteria) present in the intestinal tract.

The purpose of this research program is to study the effects antimicrobials can have on the bacterial populations present in the gut and how those changes influence the metabolites present in the pig.

What is a metabolite?

Metabolites are usually small molecules and are created by enzymatic reactions happening through the natural life of a cell or organism.

One of the effects of administering tylosin to pigs was the increased growth of bacteria producing short-chain fatty acids in the intestinal flora. The use of this antimicrobial also led to the development of Lactobacillus in the gut.

Relating changes in metabolites to the gut microbiome allows for a more complete understanding and investigation of the impact that antibiotics have in enhancing growth. Without completely understanding the mechanism of increased growth, antibiotic alternatives could be used inappropriately without much added benefit.

Link to the full paper