Senecavirus A publications in English and in Spanish

A fair part of our audience originates from Spanish-speaking countries. Our researchers appreciate your support and your interest in our work. Recently, Drs. Matthew Sturos and Fabio Vannucci published an article in the journal Albeitar regarding Senecavirus A and its tropism for reproductive organs.

A quick summary of the article that can be found online in open access:

Se trata de un virus patógeno emergente en el ganado porcino. En este artículo se proporciona información general sobre el virus y el conocimiento actual de la patogénesis y las características de la enfermedad.

For our English-speaking readers, we recommend a previous publication on this page also by Dr. Sturos called Natural and experimentally-induced Senecavirus A infections in boars.

Happy reading!

Science Page: Natural and experimentally-induced Senecavirus A infections in boars

This is our Friday rubric: every week a new Science Page from the Bob Morrison’s Swine Health Monitoring Project. The previous editions of the science page are available on our website.

This week, we are sharing a study from Dr. Matt Sturos from the University of Minnesota, Veterinary Diagnostic Laboratory regarding Senecavirus A in boars.

Key points

  • Naturally-infected boars have been documented to shed Senecavirus A (SVA) RNA in semen for up to three months after exhibiting vesicular disease.
  • Experimentally-infected boars shed SVA RNA in semen for up to three weeks post-inoculation.
  • The majority of experimentally-infected boars did not exhibit clinical signs or develop apparent lesions.
Senecavirus A in boars
Testis of boar naturally-infected with Senecavirus A. Bright red areas indicate positive signal for SVA by in-situ hybridization.

“This update shows that SVA RNA is shed in semen from both naturally-infected and experimentally-inoculated boars. The prolonged shedding of viral RNA in semen and the presence of SVA RNA in the testes and tonsils of the naturally-infected boars for up to three months are concerning findings and raises the possibility of persistent infection in boars. While the duration of shedding in semen for the experimentally-infected boars was considerably shorter than for the naturally-infected boars, the fact that all contemporary-strain boars had PCR-positive semen on at least one collection indicate that shedding in semen is a repeatable phenomenon and shedding occurred in some boars which did not exhibit clinical signs or develop vesicular lesions. It is currently unknown whether semen from infected boars can serve as a source of infection if used to inseminate susceptible females.”