Several influenza A genotypes detected in the same farm, sub-population, and pig

In this collaborative open-access research article from the University of Minnesota, five commercial sow farms were sampled regularly over a year. Sows, gilts, and piglets was sampled with nasal swabs. A little less than 5% of the samples were PCR positive for influenza A. The strains were classified in 7 groups based on their hemagglutinin (a surface protein of the virus) sequences. One additional group was created based on another gene segment.

Complete genome sequencing influenza A Diaz 2017

Several viral groups were detected in the sub-populations of all of the 5 farms, as shown in the figure below. Influenza strains combined segments from several viral groups were detected in three farms. Additionally, several strains were detected in individual animals showing the potential for reassortment and creation of new influenza strains.

Complete genome sequencing influenza A Diaz 2017 group
Influenza viral groups (VG) detected in each farm sub-populations over time (PG:piglets, GL: gilts, NG: new gilts)   *: month during which sampling started.

Abstract

Influenza A viruses (IAVs) are endemic in swine and represent a public health risk. However, there is limited information on the genetic diversity of swine IAVs within farrow-to-wean farms, which is where most pigs are born. In this longitudinal study, we sampled 5 farrow-to-wean farms during a year and collected 4,190 individual nasal swabs from three distinct pig subpopulations. 207 (4.9%) samples tested PCR positive for IAV, and 124 IAVs were isolated. We sequenced the complete genome of 123 IAV isolates, and found 31 H1N1, 26 H1N2, 63 H3N2 and 3 mixed IAVs. Based on the IAV hemagglutinin seven different influenza A viral groups (VGs) were identified. Most of the remaining IAV gene segments allowed us to differentiate the same VGs although an additional viral group was identified for gene segment 3 (PA). Moreover, the co-detection of more than one IAV VG was documented at different levels (farm, subpopulation, and individual pigs) highlighting the environment for potential IAV reassortment. Additionally, three out of 5 farms contained IAV isolates (n=5) with gene segments from more than one VG, and 79% of all IAVs sequenced contained a signature mutation (S31N) in the matrix gene that has been associated with resistance to the antiviral amantadine. Within farms, some IAVs were only detected once while others were detected for 283 days. Our results illustrate the maintenance and subsidence of different IAVs within swine farrow-to-wean farms over time, demonstrating that pig subpopulation dynamics is important to better understand the diversity and epidemiology of swine IAVs.

IMPORTANCE At the global scale swine are one of the main reservoir species for influenza A viruses (IAVs), and play a key role on the transmission of IAVs between species. Additionally, the 2009 IAV pandemics highlighted the role of pigs in the emergence of IAVs with pandemic potential. However, limited information is available regarding the diversity and distribution of swine IAVs in farrow-to-wean farms where novel IAVs can emerge. In this study we studied 5 swine farrow-to-wean farms during a year and characterized the genetic diversity of IAVs among three different pig subpopulations commonly housed in this type of farms. Using next generation sequencing technologies, we demonstrated the complex distribution and diversity of IAVs among the pig subpopulations studied. Our results demonstrated the dynamic evolution of IAVs within farrow-to-wean farms, which is crucial to improve health interventions to reduce the risk of transmission between pigs and from pigs to people.

Link to the full open-access article

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s